筆者について

Zachariah Peterson

Zachariah Petersonは、学界と産業界に広範な技術的経歴を持っています。PCB業界で働く前は、ポートランド州立大学で教鞭をとっていました。化学吸着ガスセンサーの研究で物理学修士号、ランダムレーザー理論と安定性に関する研究で応用物理学博士号を取得しました。科学研究の経歴は、ナノ粒子レーザー、電子および光電子半導体デバイス、環境システム、財務分析など多岐に渡っています。彼の研究成果は、いくつかの論文審査のある専門誌や会議議事録に掲載されています。また、さまざまな企業を対象に、PCB設計に関する技術系ブログ記事を何百も書いています。Zachariahは、PCB業界の他の企業と協力し、設計、および研究サービスを提供しています。IEEE Photonics Society、およびアメリカ物理学会の会員でもあります。

最新の記事

PCB設計に最適なキャパシタ回路シミュレータ PCB設計に最適なキャパシタ回路シミュレータ 1 min Blog 電気技術者 電気技術者 電気技術者 コンデンサは、集積回路やPCB設計において基本的な要素であり、少なくとも1つのコンデンサを含まない回路を思い浮かべるのは難しいです。コンデンサの振る舞いと回路内の他のコンポーネントとの相互作用は、設計が意図した通りに動作することを確認するために一般的にシミュレーションする必要があります。 コンデンサは、回路内での使用に応じてフィルタリング、ブロッキング、電力安定性の振る舞いを提供でき、コンデンサ回路シミュレータは設計の安全性と有効性を検証するのに役立ちます。 最高の回路設計ソフトウェアには、コンデンサRC回路やその他の一般的な回路に対して過渡解析を実行できるSPICEパッケージが含まれています。Altium Designerは、これらの回路シミュレーションツールをはじめ、多くの機能を単一のアプリケーションで提供し、コンデンサ回路のシミュレーションを作成して実行することを容易にします。 回路設計を検証したら、業界最高のECADツールで高品質のPCBレイアウトを作成するために必要なすべてが揃っています。 ALTIUM DESIGNER 強力なSPICEシミュレーションエンジンとプロフェッショナルな設計者向けの完全なCADツールセットを備えた統合PCB設計アプリケーション。 PCB設計において、広範な振る舞いを説明するために使用できる3つの基本的な線形回路要素があります。それらは、抵抗器、コンデンサ、およびインダクタです。これらの回路要素は、電子デバイスで様々な有用な機能を生み出すために創造的な方法で組み合わせることができますが、設計が設計者の意図する通りに動作することを保証するためには、シミュレーションツールが必要です。特にRC回路のようなコンデンサ回路は、電子設計において広範な振る舞いを説明するために基本的であり、広く使用されています。 コンデンサ回路設計を作成したら、設計が意図した通りに機能することを確認するために、コンデンサ回路シミュレータが必要になります。これらのシミュレーションプログラムはSPICEエンジンに基づいており、設計者が物理的なPCBレイアウトを作成する前に回路シミュレーションを実行することを可能にします。 適切な電子設計ソフトウェアを使用すれば、コンデンサ回路シミュレーションで迅速に計算できるいくつかの重要な指標があります。 コンデンサ回路シミュレーション方法 SPICEに基づく回路シミュレーションプログラムは、反復アルゴリズムを使用して微分方程式を解くことによって動作します。これらは周波数領域または時間領域で実行されることができ、最高の回路設計ツールは追加の分析を実行して回路を理解するのに役立ちます。コンデンサシミュレーションでは、計算されるべきいくつかの特定の点があります: 過渡解析によるRC時定数の決定 フィルタリング動作を理解するための伝達関数解析 高速/高周波回路での整合を保証するためのインピーダンス計算 Altium DesignerのようなPCB設計アプリケーションは、設計者がコンデンサシミュレーションを含むあらゆる種類の回路シミュレーションを実行できるように、回路設計ツールの完全なセットをスキーマティックエディターに含んでいます。電圧源や電流源を使ってコンデンサ回路を中心に大きなシステムを構築するのは簡単で、Altium Designerの直感的なインターフェースを使用して、電流やインピーダンスなどの重要な電気的値を計算できます。 コンデンサ回路シミュレーションの目的 記事を読む
Altium DesignerでAC/DCコンバータ回路を設計する方法 Altium DesignerでAC/DCコンバータ回路を設計する方法 1 min Blog AC/DCコンバーター回路は、その名前が示すとおり、高調波AC入力を受け取り、それをDC出力に変換します。これらの回路は単に高レベルからで、ブレッドボード上で低電力で動作する場合、実際のAC/DCコンバータ回路は単なる変圧器と整流器回路に比べてもっと複雑です。これらの回路に適切なコンポーネント/部品を見つけて正確な電力シミュレーションを実行するには、強力な回路設計ツールを含む適切なPCB設計ソフトウェアが必要です。 電源、レギュレーター、変換器を設計する必要がある場合や、その他の電源システムを設計する必要がある場合でも、Altium Designerには必要な設計ユーティリティが備わっています。Altium Designerの最も優れている点は、PCB設計に必要なすべてが単一のプログラムに含まれている統合設計環境であることです。AC/DCコンバーター回路と電源システムに必要なその他のサポート回路の設計についての詳細は、当社のガイドをお読みください。 Altium Designer 強力なPCBエディターとSPICEシミュレーションパッケージを備え、回路設計機能を統合したPCB設計パッケージ。 壁面電源に接続するほぼすべてのデバイスは、壁面からのAC電力を、集積回路で使用できるDC電力に変換する必要があります。これは、多くの製品がAC/DCコンバーター回路に加えて、電力レギュレーター、PFC回路、高効率電力変換のための制御回路などの他の回路を必要とすることを意味します。成功に向けて準備を整えるには、適切な設計戦略が必要であり、システムのさまざまな部分を統合して完全な製品にする必要があります。 量産グレードの電源システムには安全で機能的なレイアウトが必要であり、設計が意図したとおりに動作することを確認するためにシミュレーションで検証する必要もあります。統合設計パッケージを使用すると、電力コンバータの回路図、高品質なPCBレイアウト、回路シミュレーションを1つのプログラムで作成できます。 AC/DCコンバーター回路を設計する AC/DCコンバーター回路は整流に依存しており、入力AC電力が残留リップルのある不安定なDC出力に変換されます。AC/DCコンバーター回路に含まれる基本コンポーネントは次のとおりです。 変圧器: これは、システムの負荷に適した値までグリッド電力を増減します。変圧器の巻数比によって、ダイオードブリッジとコンデンサーへの電圧と電流の出力が決まります。 ダイオードブリッジ整流器: この小さな回路は、AC入力信号の絶対値を受け取り、単一極性の時変信号を生成します。設計要件は、ブリッジ整流回路のダイオードが順電流を超えて動作することです。 コンデンサー: 大きなコンデンサーは、整流されたAC信号を安定させ、リップルが残ったDC電圧を生成するフィルターとして使用されます。実効直列抵抗がより小さく、コンデンサーがより大きいことが、高い充電容量と放電の高速度を確保するのに理想的なコンポーネントです。 このコンポーネント/部品のリストは、AC/DCコンバータ回路を作成するために最低限必要なもので、以下が一つの例です。設計するAC/DCコンバーターは、実際のコンポーネントデータとシミュレーションモデルを使用して強力な回路図エディターで作成する必要があり、その作業を行うには最適な設計ソフトウェアが必要です。 実際のコンポーネントを使用してAC/DCコンバータ回路の回路図を作成する AC/DCコンバータ回路の設計には、コンポーネントライブラリとPCBサプライチェーンへの接続が統合された最高の回路図設計ツールを必ず使用してください。Altium 記事を読む
最高の電源回路設計ツールとシミュレーション 最高のシミュレーション付き電源回路設計ツール 1 min Blog ベンチトップ電源から組み込みボード上の電力レギュレータ回路に至るまで、設計者はしばしばカスタム電源回路設計とレイアウトを作成する必要があります。これらの回路は設計が単純に聞こえますが、安定した高品質の電源回路設計を作成するには、Altium DesignerのSPICEベースのシミュレーションおよび検証ツールが必要です。 Altium Designerは、回路設計と回路シミュレーションツール以上のものを提供します。Altium Designerで簡単にPCBレイアウトを作成し、ボードを製造のために準備することができます。最高の電源回路設計とレイアウトを作成する方法を見るために読み続けてください。 私たちの回路設計ソフトウェアは、最高の電源回路設計とレイアウトを作成するのにどのように役立つかを示します。 ALTIUM DESIGNER 回路設計機能と強力なPCBエディタ、シミュレーション機能を統合した統一されたPCB設計パッケージです。 単純な電圧レギュレータを設計するのは簡単ですが、製品グレードの電源はリニアレギュレータをはるかに超えます。PCBのための電源回路設計は非常に複雑になり得ますし、回路図、PCBレイアウト、シミュレーション、製造ファイルを作成するためには複数のツールが必要です。システムに最適なレギュレーションと電力変換トポロジを決定した後、回路図に回路を実装し、設計を検証する必要があります。 統合設計パッケージにアクセスできる場合、電源供給回路の回路図を設計し、高品質のPCBレイアウトを作成し、単一のプログラムで回路シミュレーションを実行することができます。電源変換および調整戦略を作成およびシミュレートするのに役立つ、最高の回路シミュレーションおよび設計機能セットを見てみましょう。 レギュレータと電源変換戦略を選択する 電源回路設計では、ACからDCへのコンバータ回路から始まり、電力調整および電力変換ステージに至るまで、システム全体をブロックとして考慮する必要があります。一部の電圧または電流レギュレータトポロジーは、電源変換プロセス全体で複数の機能を提供できます。しかし、これらのレギュレータは非常に複雑であり、製造に進む前にシミュレーションで検証する必要があります。 以下の図は、電源のすべての重要な部分を含むブロック図の例を示しています。このタイプのシステムは、スイッチングレギュレータを使用して高効率の電力変換を提供することを目的としています。壁の電力を受け取り、ブリッジ整流器でACをDCに変換することができます。整流器の出力は、スイッチングコンバータからの電流スパイクを平滑化するPFC回路に渡されます。入力および出力は、導電性EMIを除去し、レギュレータセクションに安定した電力が渡されることを保証するためにフィルタリングされます。 電源回路設計ステージおよびコンバータブロック図。 レギュレータセクションは、適切なトポロジーで設計する必要があります。最も一般的なレギュレータのトポロジーはスイッチングレギュレータで、これによりSMPS電源が提供されます。これらの電源は、非常に安定した出力電圧と高効率の調整を提供するように設計することができます。また、DC-DC変換のための多くのよく知られたトポロジーがあります。 トポロジー 効率 利点 欠点 記事を読む
Altium 365によるPCBフットプリントの作成と再利用 Altium 365によるPCBフットプリントの作成と再利用 1 min Blog 多くのコンポーネントは標準化されたパッケージで提供されますが、すべてのコンポーネントメーカーがPCBライブラリにCADモデルや回路図シンボルを提供しているわけではありません。これらのCADモデルは、PCBレイアウトにおいてピンの位置、シルクスクリーン情報、重心、パッドがどのように表示されるべきかを示します。既存のPCBフットプリントを新しいコンポーネントに適用する必要がある場合、PCBコンポーネントの作成は繰り返しになりがちです。 Altium Designerのコンポーネント作成ツールとAltium 365の統合クラウドストレージ機能を使用すると、既存のコンポーネントデータを新しいコンポーネントに迅速に再利用できます。コンポーネントのバリアントを生成する際にデータを繰り返しインポートする必要がなく、このデータを設計チームの誰にでも即座にアクセス可能にすることができます。ここでは、Altium 365リポジトリに保存された既存のコンポーネントデータを新しいコンポーネントに迅速に再利用する方法を紹介します。 ALTIUM 365® Altium Designer®および人気のある機械設計ツールと統合された、電子データ管理およびコンポーネント管理プラットフォームです。Altium 365では、PCBフットプリントの作成と再利用が簡単です。 ほとんどの設計ツールでは、コンポーネントの再利用が容易ではありません。Altium 365を使用すると、既存のPCBフットプリントを新しいコンポーネントに適用するために、繰り返しダウンロードとアップロードのプロセスを経る必要がありません。多くのコンポーネントには複数のバリアントがあり、しばしば同じパッケージとピン配置を持っています。コンポーネントメーカーがお客様のために部品モデルを作成している場合、またはボードハウスで必要なモデルが見つからない場合、既存のCADモデルをコンポーネントに再利用することで、ライブラリを作成するために必要な時間を大幅に削減できます。コンポーネントを迅速に再利用したい場合は、これらのタスクをすべて、そしてそれ以上のことをAltium DesignerとAltium 365で行うことができます。 クラウドでのPCBフットプリントの作成と再利用 コンポーネントを再利用する古い方法は、PCBフットプリントと回路図シンボルのライブラリ間でデータを手動でコピーすることを必要としました。コンパイルされたライブラリは、その後、メール、独自の管理ツール、またはデータベースで検索することによって共有する必要がありました。Altium 365は、共有コンポーネントを安全なクラウド環境に保存し、Altium 365のWebインスタンス内の異なるコンポーネントとプロジェクトへのアクセスを制御することができます。 PCBフットプリントの作成と再利用の開始 TRANSLATE 記事を読む
Altium 365でシンボルとPCBフットプリントライブラリを管理する Altium 365でシンボルとPCBフットプリントライブラリを管理する 1 min Blog プリント回路設計プロジェクトに協力する必要がある場合、データを共有するためのいくつかのオプションがあります。プロジェクトには、別のコンピューターで開くためには、回路図シンボルとPCBフットプリントを含める必要がありますが、このデータを共有する古い方法は非効率的です。PCB設計ツールと統合するクラウドアプリケーションにアクセスできる場合、データの共有が簡単になり、共有データの管理を怠ることがありません。 Altium 365を使用すると、個々のシンボルやPCBフットプリント、またはプロジェクト内のコンポーネントライブラリのセットをすばやく共有できます。Altium Designerは、標準の設計および管理ツールとともにこれらの機能にアクセスできる唯一のアプリケーションです。重要な設計ライブラリを安全な環境内で迅速に共有し、データへのアクセス権限を制御しながら、これを行うことができます。他のシステムでは、Altium Designerの強力な回路基板設計機能とともに、これらの協力機能を提供していません。 ALTIUM 365® Altium Designer®および人気のある機械設計ツールと統合するPCBデータ管理およびコンポーネント管理プラットフォーム。 新しい回路基板は、適切なコンポーネントがなければ機能しませんし、CADツールには正確なPCBレイアウトを作成するためのシンボルとPCBフットプリントが必要です。複雑なプロジェクトに協力する場合、これらの重要なデータを共有する必要があります。プロジェクトをメールで共有するのは時間がかかり、設計エラーを起こしやすくなります。バージョン管理の機能がなく、データを共有する際に重要なファイルを省略する可能性が常にあります。これらの問題は、開発の遅延を引き起こす設計エラーの可能性を生み出します。 Altium 365は、プロジェクト全体、個々のライブラリ、個々のシンボルとフットプリントに対するバージョン管理を提供することで、これらの問題を解決します。Altium Designer内でアクセス可能な、包括的なコンポーネント管理を提供する完全なシステムを持つことになります。Altium DesignerとAltium 365を使用して、単一のメールを送信することなく、回路図シンボルライブラリとPCBフットプリントライブラリを管理する方法は次のとおりです。 シンボルとPCBフットプリントライブラリの管理 Altium 365を使用してシンボルとPCBフットプリントライブラリを共有および管理する方法は3つあります: プロジェクトレベルで:プロジェクトに含まれるライブラリは、他の設計データとともにサーバーに保存されます。プロジェクト内のすべてのファイルにバージョン管理が適用されます。 シンボル/フットプリントレベルで:個々のPCBフットプリントや回路図シンボルは、Altium 記事を読む
Altium Designerのリン酸鉄リチウム電池用パワーエレクトロニクスです TRANSLATE:

Altium Designerにおけるリチウム鉄リン酸塩PCBバッテリーのためのパワーエレクトロニクス
1 min Blog
パワーエレクトロニクスは、現代生活を可能にするシステムの膨大なリストを包含しています。自動車システムから電力配分システムまで、パワーエレクトロニクスは電気システム全体での電力の流れを制御し管理する責任を持っています。将来的に代替エネルギーシステムがより人気になることが予想されるため、エンジニアやデザイナーはパワーエレクトロニクスシステム用の適切なPCB設計ソフトウェアを必要としています。 パワーエレクトロニクスシステム用の設計ソフトウェアには、大規模なコンポーネントライブラリへのアクセスと管理機能、およびPCB内の電力配分とホットスポットとのリンクを示すツールが含まれている必要があります。Altium Designerを使用すると、リン酸リチウム電池のパワーエレクトロニクスのすべての側面を制御できます。これらの機能すべてに、単一のインターフェースでアクセスできます。 ALTIUM DESIGNER® パワーエレクトロニクスおよび配電アプリケーション用の設計ツールを備えた統合PCB設計パッケージ。 化石燃料は時代遅れになりつつあり、ソーラーファームや風力ファームのような代替エネルギー源に徐々に置き換えられています。エネルギー管理は研究文献の重要なトピックであり、学者たちは電力生成の中断中にエネルギーを蓄えるための多くの方法の使用を真剣に探求しています。これらの方法には、リン酸リチウム(より具体的にはLiFePO4)電池アレイの使用が含まれ、これにより生成が低下したときにエネルギーをグリッドに戻すことができます。 リチウムイオン電池は、電力貯蔵システムに限定されていません。これらの電池は、モバイルデバイス、電気自動車およびハイブリッド車の電池、および充電式電池を必要とするその他の電子機器に見られます。これらの電池の充電システムは、エネルギー貯蔵用の充電システムと同様の要求を満たす必要がありますが、規模は小さいです。 PCB設計におけるリチウムリン酸塩について知っておくべきこと リチウムリン酸塩電池用の電力電子システムは、充電率を制御し、過充電を防ぐように設計されている必要があります。過充電された電池は、電解質が高温になると過剰な水素と酸素のガスを発生させることがあります。完全に密閉された電池では、このガスの蓄積が電池が破裂する危険性を生じさせることがあります。これは、電池の全体的な寿命を短くします。電力管理および保護システムがない場合、電池は過熱し、極端な場合には火災のリスクを生じさせることもあります。リチウムリン酸塩電池は他のリチウムイオン電池よりも出力エネルギー密度が低いため、より安全である傾向があります。 電力管理システムの要件 充電式リチウムイオンおよびリチウムリン酸塩電池用の電力管理システムは、充電電圧/電流を制御し、過充電を防ぐために充電電流を制限する必要があります。これらのシステムは、短絡時に放電率を制御または抑制できるようにすることも保証すべきです。これにより、電池の寿命が延びます。 これらの電力電子システムは、バッテリーの充電と放電を制御するために、他の重要な運用要求を満たすように構築されなければなりません。これらのシステムは、その寿命を通じて、ほとんどのPCBよりも頻繁に熱サイクルを経験します。これらのシステムはまた、高電流を運ぶため、他のPCBよりも高温に耐えるように設計されなければなりません。これらの電子システムが動作する電気化学的環境は、腐食のリスクにさらします。 もし次のモバイルデバイスを動かすためにバッテリーを使用する計画がある場合、または非常用電源を提供する場合、選択肢はたくさんあります。 PCB設計におけるリチウムリン酸塩およびイオンバッテリーについてもっと学びましょう。 電力分配システムとバッテリーアレイはしばしば高電圧および高電流で動作し、信頼性を確保するために特別な設計技術が必要です。 高電圧電力システムのためのPCB設計についてもっと学びましょう。 電力システムを設計する際は、電力エレクトロニクスを設計する際に電力供給分析ツールを使用するとはるかに簡単です。 電力エレクトロニクス設計にPDNシミュレーションを取り入れることについてもっと学びましょう。 Altium
記事を読む