Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
Search Open
Search
Search Close
サインイン
製造・組立
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
製造・組立
製造・組立
PCB設計、回路基板の製造、そしてアセンブリの詳細について、リソースライブラリをご覧ください。
Overview
All Content
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
電気技術者
PCB設計者
ソフトウェア
Altium Designer
Altium 365
Assembly Assistant
Octopart
フレキシブル回路材料と組み立てについてPCB設計者が知っておくべきこと
1 min
Blog
PCB設計者
製造技術者
スマートな材料選択と初期の製造協力が、PCB設計者が信頼性高く、予想外の問題なく組み立てられるフレキシブル回路を構築するのにどのように役立つかを学びましょう。
記事を読む
Ultra HDI: それは単なる流行語ではありません
1 min
Blog
PCB設計者
システムエンジニア/アーキテクト
製造技術者
Ultra HDIは、PCB設計を従来のHDIを超えて推進し、より高密度、小型化、および性能を実現します。次世代エレクトロニクスを形成する方法を学びましょう。
記事を読む
DFM/DFAの要件 システムエンジニアリングにおいて
1 min
Blog
PCB設計者
製造技術者
DFM/DFAのベストプラクティスを用いて、製造可能でコスト効率の良いPCB設計を実現しましょう。CAD、CAM、およびシームレスな製造のための主要要件を統合する方法を学びます。
記事を読む
バックドリル充填によるPCBのブラインドビアとバリードビア
1 min
Blog
PCB設計者
ブラインドビアは、HDI PCBだけでなく、機械的なドリリングを使用し、薄い外層やビルドアップフィルム層がない標準的な構築にも使用されます。これらの設計は多くの異なるシステムで活用されており、私にとってこれは高速設計や、プレスフィットピンやねじ込みピンのための終端穴が必要なRF設計で最も一般的です。アプリケーションが何であれ、これらの穴の存在は、ドリル、メッキ、そしてPCBスタックアップに層をプレスするための複数の積層プロセスを要求します。 PCBを構築するために必要な積層回数は、従来のエッチングと機械的ドリリングプロセスを前提としている場合、価格の適切な代理指標です。ブラインドビア/バリードビアがPCB内でどのように使用されるかによって、積層回数は初期のカウントと一致しない場合があります。そのため、PCBスタックアップにブラインドビアとバリードビアを配置する前に、製造業者がPCBを構築するために代替のアプローチを取る可能性があることに注意してください。これは、総コストとルーティングエリアに影響を与える可能性があります。ブラインドビアとバリードビアの配置が積層サイクルの数にどのように影響するか、そして最終的に、構築に関連する処理ステップとコストの数にどのように影響するかを見ていきます。 積層サイクルのコスト PCB製造における各積層サイクルは、穴あけとめっきのステップを伴い、これによりPCBスタックアップ内にブラインド/バリードビアを形成することができます。ブラインド/バリードビアが設計に存在する場合、複数の積層ステップが使用され、エッチングされた各層のグループを結合して最終的なスタックアップを作成します。各積層サイクルは処理ステップを追加し、それによって設計のコストが増加します。ブラインドビアは多くの製品で絶対に必要ですが、処理ステップの順序に関するいくつかの簡単な考慮事項により、追加コストの一部を相殺し、製品を競争力のあるものに保つことができます。 通常、ブラインド/バリードビアが必要な層のスパンの数を数え、スタックアップの外側にある中心コアまたはキャッピング層に1サイクルを加え、必要な積層の総数を得ます。例えば、以下のスタックアップを考えてみましょう。これには、埋め込まれたプリントRF回路用のスルーホールビアとバリードビアがありますが、これについては別の記事で より詳しく説明しています。 この例では、2つの積層サイクルが必要な対称スタックアップがあります。1つは埋め込まれたバリードビア用、もう1つのサイクルは外側の2層用です。これは、ブラインド/バリードビアを形成するために必要な標準的な多重積層プロセスを示す簡単な例です。 ブラインドビアやバリードビアの使用により、標準的なHDIスタックアップで見られるような連続積層を使用するよりも、少ない積層回数や異なる処理方法が可能になる場合があります。 標準的なHDIスタックアップで見られるような。これには以下のような例が含まれます: 片面レイヤーから始まるブラインドビアやオフセットバリードビア(ハイブリッド構造ではないビルド) 交差するブラインド/バリードビアを持つスタックアップ ブラインド/バリードビアを持つハイブリッドスタックアップ リバーススタックアップ(またはキャップコアスタックアップ) バックドリルアンドフィル 連続積層の代わりに使用できる別のプロセスとして、特定のレイヤーでバックドリルアンドフィルを行うことがあります。これにより、1回以上の積層ステップが不要になる場合があります。バックドリルアンドフィルでは、必要なレイヤースパンを超えてブラインドビアまたはバリードビアを形成しますが、その後、製造業者がブラインド/バリードビアを所望の長さまでバックドリルします。これにより、ビアが所望のレイヤーで終了し、ドリルされた誘電体の残りの空間は非導電性エポキシで埋められます。埋められた領域は、ドリルされたレイヤーが銅平面レイヤーであるような場合に、メッキ処理されることもあります。 上記の例のいくつかでは、これがスタックアップの一部を製造するための好ましい方法である可能性があります。これは、1回以上の積層サイクルを省略できるためです。これらの例での処理ステップを少し予測することで、ブラインド/ビア埋め込みビアの使用計画をより良く立てることができ、PCB製造での積層ステップをいくつか省略できる可能性があります。 非対称ブラインド/ビア埋め込みビア PCB製造は一般的に層の配置とそれに伴う積層での対称性を前提として進められます。しかし、ブラインド/ビア埋め込みビアを持つPCBスタックアップは、スタックアップで対称的な配置を使用しない場合があります。例えば、以下のようなビア埋め込みビアの場合、これは追加の積層を使用する代わりに、バックドリルアンドフィルが製造ソリューションとして評価される典型的なケースになります。 この例では、製造中に層スタックアップを対称に保つと、2つの可能なプロセスが発生します:
記事を読む
アセンブリアシスタントを使用して手動組み立てプロセスを加速する方法は?XVPフォトニクスのストーリー
1 min
Blog
XVP PhotonicsがAssembly Assistantを使用して部品配置の精度を向上させ、手動組み立てを25%速めた方法を学びましょう。彼らの成功のストーリーを発見してください!
記事を読む
PCBデザイナーが良い顧客になる方法:製造の観点から
1 min
Blog
PCB設計者
電気技術者
製造サービス会社との強力なパートナーシップは、生産プロセスがスムーズに進むか、コストのかかる遅延が発生するかの違いを意味することがあります。製造者の視点からすると、顧客の特定の慣行が、デザイナーを単なるクライアントから価値あるパートナーへと昇格させることもあれば、見積もりのリクエストが列の後ろに押しやられる原因となることもあります。 PCBデザイナーが最高の顧客となる方法についてのガイドです。これにより、高いレベルのサービスを確保し、製造業者との強固な関係を育むことができます。 製造業者のプロセスと能力を理解する 優れた顧客になるための基本的なステップは、製造業者のプロセスと能力を理解することです。時には、製造業者がどのように運営しているかをより深く理解するために、製造プロセスを経験する必要があります。各製造業者には独自の強みと限界があり、設計要件をこれらと合わせることで、多くの潜在的な問題を防ぐことができます。 設計プロセスの早い段階で製造業者との議論を開始してください。単純なボード以外のものを製造する場合は、製造業者の能力と材料の選択肢を決定する必要があります。設計チームは、メールを送るだけでこの情報をすぐに入手できます。この情報は、製造業者のより広範な DFMガイドラインの重要なサブセットです。これらのガイドラインに準拠した設計は、製造が容易であり、エラーや遅延のリスクを減らすことができます。 明確で完全なドキュメントを提供する 製造業者は、見積もりを提供し、生産を進めるために、ビルド要件に関する完全なドキュメントを必要とします。製造業者には、標準のビルドファイルセットが必要であり、それにはGerberファイル、ODB++、またはIPC-2581のエクスポートが含まれます。エクスポートには、必要なPCBレイヤー(銅、シルクスクリーン、はんだマスク、ドリル図面)をすべて含めてください。 明確で正確なドキュメントは、確認のための行き来を最小限に抑え、プロセスを加速させます。残念ながら、Gerberファイルには、製造を完全に見積もり、進行するために必要なドキュメントのごく一部しか含まれていません。必要な他の重要な情報は以下の通りです: 注記付きの製造図面 ドリル表を示すドリル図面 ドリル図面に一致するNCドリルデータ ボードの形状が特殊な場合は、機械図面が必要になることがあります 完全な 製造ノートを含む製造図面を省略すると( リジッドフレックスPCB製造ノートに関するこのリソースも参照)、製造業者がこれを要求するか、PCB内ですべての製造詳細を指定するよう求められます。 Draftsmanでの完全な製造図面ドキュメント。 完全なドリル表とそれに対応するデータは、製造業者が今後のビルドの処理ニーズを判断するのに非常に役立ちます。NCドリルデータからドリル表を再構築するのではなく、製造ドキュメントパッケージにドリル表とドリル図面を含めることで、製造業者は使用されているドリル、PCB内のドリルヒット数、許容されるドリルサイズの許容差、関与するレイヤーペアを正確に把握できます。 Draftsmanドキュメントでドリルテーブルを生成する方法について、 Altiumドキュメントで詳しく学びましょう。
記事を読む
PCBビア製造のための直接金属化プロセス
1 min
Blog
PCBにビアやスルーホールが製造される際、穴の壁に必要な銅を構築するために金属の堆積とめっき処理が必要となります。ビアの壁に金属膜を構築する作業は電鋳として知られるプロセスで行われますが、このプロセスを実施する前に、さらなる堆積のためのシード層を形成するための初期金属化処理が必要です。後続の電鋳銅プロセスをサポートするために使用できる初期金属化処理には、無電解銅と直接金属化があります。 無電解銅は、業界全体で使用されている標準的な長期にわたる初期金属化処理です。低密度設計では、無電解銅は広く使用されているプロセスであり、適切に制御されていれば、顕著な信頼性の問題は発生しません。高密度PCBでは、マイクロビアの小さな特徴サイズのため、無電解銅めっきの信頼性の問題がより明らかになる可能性があります。 デバイスの小型化が進むにつれて、直接金属化の容量が増加することが期待され、これは UHDIデザインのための信頼性の高い製造およびめっき容量のニーズに対応することになります。これは、IC基板の需要の予想される成長と、電子製造容量の国内回帰の現在のトレンドに一致しています。 初期金属化の概要 PCB製造における主要な金属化プロセスは、穴あけとデスミアの後に実行され、このプロセスは、めっきが必要な穴内にシード層を形成するために使用されます。シード層は、下記に示すように、穴壁に沿って形成され、このシード層が後続の電気めっきの基盤を形成します。 電気めっきを用いた主要な金属化およびビア形成。 最終的な穴壁厚さ(ほとんどの設計で1ミル)まで電気めっきにより銅層が堆積された後、外層のめっきとはんだマスクが適用され、これにより最終的なめっき層を アンテントされないビアに適用することができます。ビア壁がめっきされると、穴壁内の堆積された銅の厚さを評価し、穴軸に沿っためっきの均一性を確保するために、微細構造分析が行われることがあります。 大きな直径では、大きなアスペクト比を含む場合、結果として得られるめっきは一般に非常に高品質であり、非常に信頼性が高いとされています。小さなサイズにスケールダウンすると、無電解銅はいくつかの信頼性の課題を示し始め、より厳密なプロセス制御の使用、または直接金属化プロセスへの完全な移行を動機付けます。 無電解銅 無電解銅は、電鋳前に使用される伝統的な一次金属化プロセスです。このプロセスは、PCB絶縁材料上に直接、パラジウム触媒を用いて溶液から銅の薄層を堆積させます。薄い銅層が堆積されると、最終的な銅めっき厚さに達するまで上に電鋳銅が堆積されます。このプロセスは、パラジウム触媒の存在下でホルムアルデヒドを使用して銅イオンの還元反応を含みます。 2HCHO + 2OH − → 3H 2 (g)
記事を読む
Pagination
First page
« First
現在のページ
1
ページ
2
Next page
Next ›