PCB Layout

An integrated PCB editor along with real-time connection to multiple domains.

High-Speed PCB Design

Simple solutions to high-speed design challenges.

PCBレイアウト

Filter
0 Selected Content Type 0 Selected 全て Software 0 Selected 全て Clear ×
Clear
0 Selected Content Type
0 Selected Software
PCBレイアウトにおけるクリスタル発振器は周波数を安定させます Thought Leadership PCBレイアウトにおけるクリスタル発振器は周波数を安定させます 人類の歴史の大部分において、私たちは生活を計画するために天文学的な時間計測に頼ってきました。現在では、日常生活を管理するのに役立つ洗練された時計を持っています。現代の生活がますます慌ただしくなるにつれて、私たちは秒の一部を追跡する必要があります。電子pcbレイアウト用のクリスタル発振器ガイドラインは、これを可能にする秘密の要素です。 シュミットトリガ発振器や555タイマーからの出力クロック信号は、RCタイムコンスタントを使用して制御されます。これらの回路を使用する際の問題点は、抵抗器とデカップリングキャパシタの値が時間とともに一定ではないことです。抵抗と容量は、回路基板の温度によって変化することがあります。コンポーネントは経年劣化もします。これらの要因により、時計の周波数は時間とともにドリフトします。 周波数の安定性と精度が重要な場合、クリスタル発振器がより良い選択です。特定の形状に切断された石英クリスタルは、特定の共振周波数で振動することができ、この周波数は温度変化に対して非常に安定しています。クリスタル発振器は、適切に配置して接続されている場合、kHzからMHzまでの安定した周波数を出力することができます。 デジタルシステムがクロックを使用する場合、設計上の課題が生じます。これは、寄生容量や信号反射のような問題が信号の整合性を低下させる可能性があるPCBでは特に真実です。これらの設計上の問題は、高周波数でより顕著になります。幸いなことに、設計における信号の整合性を維持するためのいくつかの設計戦略があります。 伝播遅延とクロックスキューの最小化 特にTTLやCMOSロジックデバイスのようなロジック回路の切り替えは、クロック出力から下流に伝播遅延が蓄積される原因となります。これはナノ秒のオーダーであることが多いですが、高周波回路ではクロックパルスの幅と比較して顕著になります。 クロックスキューは使用されるクロックに関係なく発生する可能性があります。トレースの長さの変動が原因で、さまざまな電気部品にクロック信号がルーティングされる際に時間遅延が蓄積します。クロックスキューが伝播遅延と組み合わさると、並列トレース内のクロックパルス間の不一致が顕著になることがあります。 クロックスキューと伝播遅延は、 信号トレースの長さを調整することで補償できます。連続するコンポーネント間の差動トレースの長さは、クロックスキューを最小限に抑えるために等しくするべきです。特定の並列トレースには異なる数のコンポーネントが含まれている場合があり、各コンポーネントの伝播遅延は、プリント回路基板上にトレースを配置する際に考慮されるべきです。 クロックスキューを避けるために並列トレースを一致させる グラウンドプレーンの配置 一部のPCB設計者は、電源と信号トレースをグラウンドプレーンの直上に走らせがちです。これは推奨されません。グラウンドプレーンの配置が不適切な場合、クロック回路がアンテナとして機能する原因となります。回路は 外部EMIに対して脆弱になるだけでなく、他の近くの回路にEMIを引き起こす可能性があるRF放射を生成します。 特定のクロック周波数において、グラウンドプレーンの厚さは波長の半分に過ぎません。クリスタル発振器は本質的に広帯域の電流源であるため、クロック信号とそのリターン電流は、高周波成分の帯域を含んでいます。これらの電流をグラウンドプレーン上で流すことを許すと、中央給電パッチアンテナを作成したことになります。 クロック信号帯域がグラウンドプレーンの共振周波数のいずれかと重なる場合、グラウンドプレーン内で強い電流が生成される可能性があります。しかし、電源とグラウンドプレーンを分離すると、高周波電流ループによる放射が減少します。これにより、外部EMIへの感受性も低減されます。 EMIを減らすためにグラウンドプレーンと電源プレーンを分離する 適切なキャパシタを使用する クリスタルオシレータからの信号整合性は、2つのキャパシタを使用することで維持できます。1つは高電圧ピンとグラウンドプレーンの間に、もう1つはグラウンドピンとグラウンドプレーンの間に接続する必要があります。選択した特定のクリスタルに合わせてキャパシタを選択する必要があります。必要な容量は、同じメーカー内でも異なるオシレータモデルによって異なります。 クリスタルオシレータには負荷容量仕様(通常は20から50 pF)が含まれており、これを使用してクリスタルに使用するキャパシタを決定できます。各キャパシタは、負荷容量値の2倍から、任意の漂遊容量を引いた値である必要があります。漂遊容量値は数pFになることが多いです。
回路基板レイアウトのための多層PCB設計に関するヒント Thought Leadership 回路基板レイアウトのための多層PCB設計に関するヒント 初めて何かをやるときは困難になるものです。ひな鳥は巣から外へ出されるのを喜ばないでしょうし、十代の若者は本物の初デートの前は不安で仕方ないでしょう。私も初めてのデートのときは怯えきっていました。とはいえ、その出来事は私の人生の中でとても素晴らしい時間になったので、最初の一歩を踏み出せたことに満足しています。 初めて多層PCBのレイアウトを設計する皆さんは、これとは違うけれど同じように重大な一歩を踏み出そうとされています。わからないことばかりで、ミスをしたらどうしようと不安を覚えていませんか? だとすれば心配はいりません。それは誰もが通る道ですし、役立つ情報がいくつもあります。この記事では、注意すべきライブラリー関連のいくつかの問題のほか、設計の開始に向けた一般的なガイドラインについてご紹介します。 目標を達成するためには、とにかくやってみないといけないときもあるでしょう。PCB設計者にとっては、初めての多層基板の設計がこれにあたります。設計を始めるために役立つ情報を見ていきましょう。 多層設計用のライブラリーの準備 多層PCBを設計する際は、まずCADライブラリーを確認しておきます。片面基板や両面基板の設計しか行ったことがない場合は、ライブラリーがマルチレイヤーに対応していないかもしれません。まずは次の3つを確認しておきましょう。 ネガティブプレーン層: 多層PCBのレイアウトでの電源プレーンやGNDプレーンの作成には、多くの場合に ネガ状の画像プレーン層が使用されます。一部のCADツールでは、ネガティブプレーン層のドリル穴用に、パッドやフットプリントの形状に組み込まれた クリアランスが必要になります。こうしたツールを使用する場合は、必ずパッドやフットプリントの形状に正しいネガ状のプレーンクリアランスを設定します。これを怠るとショートが発生することになります。 内層の信号層のパッド形状: デザインの中には、内層とは異なるパッド形状が外層で使用されるものもあります。たとえば、ピン1のパッドが、内層で通常使用される円形ではなく、視覚認識を考慮して四角形にされることが多々あります。ライブラリーがマルチレイヤーに設定されていない場合は、内層の信号層で必要なパッド形状を使用できない可能性があります。 製図の要素: レイアウトツールで製造図や実装図を作成する場合は、ライブラリーに保存されているさまざまなロゴ、テーブル、ビューを使用できるかもしれませんが、これらは多層基板用に変更する必要があります。 多層PCB設計用のライブラリ部品の準備 製造工場の要件を理解する 多層PCB設計には、片面基板や両面基板よりも大きな利点があります。つまり、スペースを節約して設計密度を上げられるだけでなく、シグナルインテグリティーの問題もさらに対応できます。重要なのは、設計を開始する前に製造工場と打ち合わせを行い、多層基板の製造要件を理解しておくことです。 こうした要件は、それぞれの製造工場が持つ基板技術のレベルによって変わってきます。特定のレイヤー数を超える基板に対応できない、または非常に小さなトレース幅やスペース幅の基板を製造できない工場もあるでしょう。こうした制限を超えると、製造コストが増大したり、基板が製造できなかったりする場合があります。 たとえば、ビアの種類について考えてみましょう。通常、製造工場は標準的なスルーホールビアには対応できるものの、 ベリードビア、ブラインドビア、マイクロビアを使用する場合は事前に工場に確認しておいたほうがよいでしょう。前述のとおり、トレース幅や間隔、基板層の数や構成についても相談しておくべきです。こうした要素はすべて、回路基板が製造できるかどうかに影響を及ぼすため、設計を開始する前にしっかりと把握しておく必要があります。
PCB設計:PCBレイアウトのためのオプトアイソレータチュートリアル PCB設計:PCBレイアウトのためのオプトカプラチュートリアル 二度も三度もスヌーズボタンを押してしまい、渋々ながら目を覚ますことに罪悪感を感じたことはありませんか?私の妻は、目を開けずにスヌーズボタンを押す私が世界記録を持っているのではないかと主張しています。しかし、三度目のスヌーズアラームが不思議と鳴らない時があり、時間通りに一日をスタートさせるのは負け戦になります。 電子機器では、組み込みシステムが外部センサーやスイッチからの入力信号を受け取るためにオプトカプラ回路に頼ることがよくあります。ある意味で、それらはマイクロコントローラーのアラーム時計のようなものです。理想的には、すべての信号がマイクロコントローラーに正確に伝達されます。しかし、オプトカプラのシンボルが適切に実装されていない場合、マイクロコントローラーは入力信号を見逃したり、入力がトリガーされていない時に誤って信号を検出したりすることがあります。このPCB設計オプトアイソレータチュートリアルでは、成功するオプトカプラPCBレイアウトの設定方法について話し合います。しかし、まずはこのオプトカプラチュートリアルでオプトカプラ設計ガイドがどのように機能するかを思い出しましょう。 オプトアイソレータチュートリアル:オプトカプラPCBの基本原則 オプトカプラーまたはオプトアイソレーターは、光学インターフェースを介して入力信号を隔離する電子部品です。最も基本的な形態のオプトカプラーは、単一の集積回路内に赤外線LEDとフォトトランジスタを含んでいます。電流が流れると赤外線LEDが点灯し、その強度は電流の振幅に依存します。LEDの光によってフォトトランジスタが活性化され、そのコレクターとエミッター間に短絡が生じます。 赤外線LEDとフォトトランジスタは、ガラスまたは空気によってしばしば分離されています。これにより、オプトカプラーのPCBレイアウトを通じて10kVの電気的絶縁が実現されます。その結果、オプトカプラー回路は、入力信号の環境から発生する電気的干渉から埋め込みシステムを隔離するのに理想的な選択肢となります。 電気的ノイズから埋め込みシステムを保護するだけでなく、オプトカプラーは低電圧と高電圧システムを分離するためにも使用されます。例えば、フォトトライアックは、オプトカプラーの変形であり、高AC電圧デバイスを制御するために使用できます。例えば、ACモーターです。これにより、マイクロコントローラーとその付随するコンポーネントに損傷を与える可能性のある回路の故障のリスクが排除されます。 PCBオプトアイソレーターチュートリアル:オプトカプラーでの間違い オプトカプラーは、ほとんどの設計者が遭遇する単純な受動部品です。オプトカプラーPCBを動作させることはロケット科学ではありませんが、使用する目的を損なうか、不安定な入力信号を引き起こす設計ミスがいくつかあります。 1. オプトカプラーPCBのグラウンド接続を分離しない。 基本的なオプトカプラーPCBレイアウトでは、集積回路(IC)には2つのグラウンドピンがあります。一方は赤外線LEDに、もう一方はフォトトランジスタに接続されています。PCBをルーティングする際に 両方のグラウンドを一緒に接続することは間違いです。私のエンジニアリング経験では、機械で使用される電子コントローラーでもこれを見かけました。 オプトカプラーを使用する主な理由は、二つの回路を安全に分離することです。外部グラウンドがPCBに接続されると、回路のグラウンドノイズが直接敏感なオンボード回路に結合する可能性があります。代わりに、外部グラウンドピン用の別の信号接続を作成し、入力グラウンドワイヤー用に専用のコネクタを割り当ててください。 2. 電流制限抵抗の値を間違える 適切な出力電圧を適用するだけでなく、オプトカプラーの赤外線LEDには適切な電流が必要です。最小前方電流出力の値は、該当するオプトカプラーの 電流伝達比チャートから参照できます。電流制限抵抗がオプトカプラーの最小値で動作する場合、フォトトランジスタは不規則に動作する可能性があります。例えば、スイッチからの10の有効な入力のうち、一部しか検出されない場合があります。 一方、制限抵抗の値を低すぎに設定してはいけません。これは、赤外線LEDが故障するのを防ぐためです。 通常のLEDと同様に、赤外線LEDには超えてはならない最大前方電流があります。これにより、適切な電流制限抵抗を選択することが、信頼性の高いオプトカプラーPCBの動作を保証するための重要なステップとなります。 3
PCB取り付け穴 メッキPCB取り付け穴のPCB接地手法 基板を筐体に配置するときは、何らかの方法でその筐体に取り付ける必要があります。PCBの表面をネジで傷つけずに確実に取り付けるには、通常はメッキスルーホールをただコーナーに配置します。このPCB取り付け穴は通常、ソルダーマスクの下にパッドが露出しているため、必要に応じて取り付けポイントをネットの1つに電気的に接続できます。この場合によく発生する問題の1つは、接地とPCB取り付け穴です。取り付け穴を設計で接地する必要がある場合、どのように接地する必要があるのか?筐体に接続するのか、内部接地のみに接続するのか、それとも別の場所に接続するのか? これは楽しい質問で、答えは通常、「必ずすべき/絶対にすべきではない」という具合になります。取り付け穴は必ず筐体に接地しているという人もいれば、設計が台無しになるので絶対に接地すべきではないという人もいます。このように定められたほとんどの設計ルールと同様に、実際の答えはより複雑で、入力電力から接地系の構造に至るまで、設計の多くの側面が関わります。PCBへの入力で電源と接地がどのように定義されているかを理解していれば、接地を適切に考慮した取り付け方法を設計することが容易になります。 PCB取り付け穴の設計方法 名前が示すように、PCB取り付け穴は、回路基板を筐体に固定するために使用されます。PCB取り付け穴に関しては、誰もが同意するいくつかのポイントがあります。 金属ネジで取り付けることができるように、取り付け穴は一般的にメッキされている必要がある。 浮遊する金属片はEMIの発生源となるため、取り付け穴は何らかのGNDネット(アース(PE)、信号GND (SGND)、接地済み筐体など)に接続する必要がある。 取り付け穴は、標準サイズの留め具に対応するサイズにする必要がある。 取り付け穴はメッキなしでもかまわないが、設計でプラスチック製のネジやスタンドオフを使用する場合以外は望ましいやり方ではない。 これについては、 位置決め穴に関する以前の記事で少し詳しく説明しました。というのは、一部の有名企業では取り付け穴と位置決め穴を区別していないからです。設計者にとって、このように区別することは重要です。取り付け穴はほぼ確実に基板の接地系の一部になるし、設計におけるEMIと安全性にこの相違がどのように影響するかを正確に考慮する必要があるからです。 メッキした取り付け穴を筐体に接続することはベストプラクティスであり、そのような接続が可能な場合は、筐体の接地をアース接地に接続することができます。ただし、筐体内に金属元素があるバッテリー駆動システムなどでは、必ずしもそうとは限りません。PCBの取り付け穴、筐体、およびアースの接続方法によっては、デバイスでEMIが発生したり、ユーザーが感電したりする可能性があります。後者のケースは、電源の筐体がアースに十分に接地されていないか(プラグを差し込んだとき)、マイナス電源端子が十分に接地されていない場合に(プラグを抜いたとき)、コンピューターの電源で発生するおそれがある問題の1つです。適切なアース接地接続を含め、PCBの接地手法を適切に行えば、フローティング接地をなくすことができます。それが、金属筐体の接地したPCB取り付け穴の主な用途の1つです。 PCBの接地手法と取り付け穴 上の画像は、過度に一般化したものではありません。場合によっては、取り付け穴を基板に接地する必要がまったくなく、代わりに筐体に接地する必要があります。それ以外の場合、選択の余地はありません。接地する場所が他にないため、取り付け穴を内部接続に接地する必要があります。取り付け穴に適用するPCB接地手法では、対処の必要な電流、その電流の周波数、ESDなどの安全性の問題を考慮する必要があります。残念ながら、考えられるあらゆる状況に対応できる単独のアプローチはありませんが、PCBの取り付け時に生じる接地接続をどのように考えたらいいのかは、以下のポイントを参考にしていただければと思います。 ケース1: 低電流DC、ガルバニック絶縁なし 以下の表は、標準的なPCB接地手法の一環として、メッキPCB取り付け穴をどのように扱うのかという状況をいくつか示しています。ここでは、3線式DC(POS、NEG、アースGND接続)、2線式DC(POSとNEGのみ)、3 線式ACをDCに整流した場合を検討します。 入力電力 金属筐体
Altium Need Help?