Layer Stackup Design

Reduce noise and improve signal timing, even on the most complex boards.

ビア

PCB設計とビアの詳細について、リソースライブラリをご覧ください。

Filter
Clear
シミュレーション駆動型PCB設計 シミュレーション駆動設計は、PCBの信号問題などを解決できます 電子業界や研究分野で働いている場合、シミュレーションが日常的な作業の一部である可能性があります。よりシンプルなシステムは直感に頼って設計され、設計完了後にシミュレーションされますが、高周波で動作するまたは非常に高いデータレートを必要とするより高度なシステムは、PCBレイアウトが完了する前後に資格が必要です。シミュレーションソフトウェアは、多くの高度なシステムのPCB設計において、より重要な役割を果たさなければなりません。 残念ながら、多くのシミュレーションツールは、PCB設計ソフトウェアのユーザーによる使用を想定して作られていないため、ほとんどの設計者にとって直感的ではありません。しかし、これらのシステムは使いやすさの面で大きく改善されつつあり、設計プロセス内での使用がシミュレーションツールを非常に強力にするものです。 PCBシミュレーションで調べるべきこと 電子設計におけるシミュレーション駆動型設計は、設計ツール、データ管理システム、およびシミュレーションアプリケーション間のインターフェースを作成することから始まります。今日のプロの電子設計チームは、電気、機械、熱、および信頼性の分野にまたがる経験を持つ多機能チームです。設計チームは、物理設計データを迅速に共有し、シミュレーションモデルをエクスポートし、設計評価シミュレーションを実行するのに役立つシステムを必要としています。 PCBのシミュレーション駆動型設計プロセスは、3つの広範な領域にわたり、特定のプロセスに従います: 回路シミュレーション 基板レベルのシミュレーション 組立シミュレーション このプロセスは反復的であるため、以前のステップに戻ることを示す矢印を描きます。回路シミュレーションの結果で問題が特定された場合、回路設計を修正するために回路図に戻る必要があります。PCBシミュレーションの段階で、結果は回路、PCBレイアウト、またはその両方の修正を必要とすることを示すかもしれません。これは、EMIシミュレーション、SI/PI、および熱シミュレーションの場合に当てはまります。これらの結果はすべて、回路に必要な変更を示す可能性があり、それによってPCBレイアウトの変更を余儀なくされるかもしれません。 回路シミュレーション(伝送線を含む!) SPICEを使用する人は、回路シミュレーションについてよく知っています。SPICEシミュレーションでは、時間領域と周波数領域の両方で、重要な振る舞いの広範囲を調査し評価することができます。SPICEシミュレーションは、回路設計者の主要な支柱であり、基本的な アナログ回路と電力回路が意図した機能を提供するかどうかを決定する 後のシミュレーションで回路の電力期待値を使用する 精密回路のコンポーネント許容差を検証する 現象論的論理回路で特殊ロジック機能を検証する これらのタスクは、コンポーネントのモデル定義が利用可能である限り、SPICEシミュレーションで実行できます。上記のエリアのいずれかは、それ自体の記事のスペースを取る可能性がありますが、ここではそれらの点については触れません。 デジタル信号の整合性やRF信号のシミュレーションが回路やスキーマティックレベルで必要なシステムは、はるかに高度であり、その構造の振る舞いを定義する等価回路モデルまたは線形ネットワークが必要です。これらの構造を回路で使用するシミュレーションでは、ネットワークパラメーター、 通常はABCDパラメーターや他の線形ネットワークパラメーターセットを使用して、線形コンポーネント間で簡単にカスケードできます。 意図したスタックアップで候補となる伝送線またはRF構造を設計する Sパラメーターや伝達関数を使用して、通常はその性能をシミュレートする
基準を満たす:IPC 6012 クラス3 ビアサイズとアニュラーリング Thought Leadership 基準を満たす:IPC 6012 クラス3 ビアサイズとアニュラーリング 上の画像のPCBレイアウト、特にシルクスクリーンを突き抜けるビアとドリルホールを見てください。これらのビアのいくつかが中心からずれていることがはっきりとわかります。つまり、これらのビアを作成したドリルの打ち込みが受け側のランドの真ん中ではなかったということです。これにより、アニュラーリングが残され、これは特定のIPC製品クラスでは欠陥とみなされるかもしれません。リジッドボードのIPC基準において、異なるタイプのボード(HDI、フレックスなど)で欠陥とみなされる可能性のあるいくつかの製造特性があります。アニュラーリングは、欠陥とみなされる可能性のある多くの構造特性のうちの一つに過ぎません。 デザイナーはしばしば、残されたアニュラーリングとパッドサイズを混同しますが、私もその一人です。しかし、両者は関連しています。デザイナーは、製造中に残されるアニュラーリングが十分に大きくなるように、表面層に十分に大きなパッドサイズを配置する必要があります。アニュラーリングが十分に大きければ、ドリルの打ち込みは欠陥とはみなされず、ボードは検査に合格するでしょう。 IPC-2221規格では、クラス1から3の製品に対して、環状リングが一律に適用されます。新しいIPC-6012規格では、クラス3製品を除くすべての製品でブレイクアウトが許可されています。この記事では、高信頼性リジッドPCBの標準製造要件であるIPC-6012クラス3の環状リングの制限について説明します。 IPC-6012クラス3環状リングサイズ IPC規格は、デバイスの信頼性レベルに基づいて3つの 製品分類(クラス1、クラス2、クラス3)を定義しています。これらのクラスごとに、PCBの製造、清掃、検査に関するガイドラインの性能と資格要件がそれぞれ定められています。コンポーネントの配置、ビアホールのめっき、残留汚染物質、トレースサイズ、およびPCBA内のその他の考慮事項などの問題が、これらのクラスの各規格で取り扱われています。 製造後にメッキされたスルーホールビアが受け入れられるためには、各IPクラスで残された環状リングが十分に大きいことを確認する必要があります。したがって、「環状リングのサイズ決め」という作業は、実際にはビアに適切なランドサイズを選ぶことに他なりません。ビアのランドが十分に大きければ、 製造公差をPCBでうまく対応できたことになります。 環状リングの視覚化 下の図は、 PCB製造プロセス中のドリリングで残された環状リングがどのように生じるかを示しています。左の画像はブレイクアウトを示しており、これはIPC-6012基準では許可されていますが、IPC-2221A基準では許可されていません。IPC-6012は、リジッドPCBに使用される主要な適格性基準なので、パッドとビアのサイズを決める際に考慮すべきです。また、クラス3の環状リングの限界は、2つの基準で一貫しています。 環状リングは外層と内層で2つの方法で測定されます: 外層の場合、環状リングは ビア壁のメッキの端からパッドの端まで測定されます。 内層において、環状リングは 穴の端からパッドの端まで測定されます。 これは、2つの値がメッキの厚さによって異なることを意味し、これはクラス1および2の場合は最小0.8ミル、クラス3の場合は1ミルです。ほとんどの製造業者は、製品内の未充填のメッキスルーホールビアを、IPC-6012標準の表3-2に記載されている機械的に穿孔された穴の最小穴壁メッキ要件(クラス3の最小メッキ厚さ1ミル)よりもわずかに厚くメッキします。 最小環状リングサイズ要件 IPC-6012によると、クラス3製品はいくらかの残りの環状リングが必要であり、クラス1およびクラス2製品はいくらかのブレイクアウトを許容します。 製品クラス
ブラインドビアとバリードビアとは何か、そしてどのように使用されるのか? ブラインドビアとバリードビアとは何か、そしてどのように使用されるのか? 私の以前の記事 のいくつかや他の多くの公開文書で指摘されているように、コンポーネントのリードピッチはますます細かくなり、小型フォームファクターのデバイスが今日開発されている製品(携帯電話など)の大部分を占めるようになってきました。 これらの 混雑したPCBの両面にコンポーネントを接続する方法は、製品開発チームが最初に考慮すべき要因の一つであるべきです。通常、この接続プロセスはブラインドビアとバリードビアの使用を通じて行われます。この記事では、使用されるビアの各種類、その応用と利点、およびその短所について説明します。 いくつかの基本と起源の歴史—ブラインドビア まず、ビアの起源に少し踏み込み、それらがどのように使用されるかを理解することが役立ちます。ビアは、PCBの一方の面から他方の面、または内層に信号を通すために、穿孔されメッキされた穴です。ビアは、コンポーネントのリードを信号トレースやプレーンに接続したり、信号が信号層を変更するのを許可するために使用できます。ビアがPCBを通り抜ける場合、それはスルーホールビアまたはスルービアと呼ばれます。 図1. 様々なタイプのビア ブラインドビア ビアがPCBの一方の面から始まり、完全に通り抜けない場合、それはブラインドビアと呼ばれます。ブラインドビアの4つのタイプは以下の通りです: フォト定義ブラインドビア。 シーケンシャルラミネーションブラインドビア。 制御深度ブラインドビア。 レーザードリルブラインドビア。 これらのタイプは以下で詳しく説明されています。 フォト定義ブラインドビア:フォト定義ビアは、フォトセンシティブ樹脂のシートをコアに積層して作成されます(このコアは、電源プレーンやいくつかの埋め込み信号層を含む積層層で構成されています)。フォトセンシティブ材料の層は、穴を作成する領域を覆うパターンで覆われ、その後、PCB上の残りの材料を硬化させる波長の光にさらされます。これに続いて、PCBはエッチング溶液に浸され、穴の中の材料が除去されます。これにより、次の層へのパスが作成されます。エッチングプロセスの後、穴とPCBの外表面に銅がめっきされ、PCBの外層が作成されます。この操作は通常、PCBの両側で同時に行われ、両側に層が追加されます。 フォト定義ビアは、多層有機BGA(ボールグリッドアレイ)パッケージや携帯電話のPCBを作成するために一般的に使用されます。それらを使用する利点は、数千のブラインドビアを作成するコストが、たった一つを作成するコストと同じであることです。少数のブラインドビアのみが必要な場合、その使用はコストの不利益となります。 TRANSLATE: シーケンシャル・ラミネーション・ブラインド・ビア:シーケンシャル・ラミネート・ブラインド・ビアは、非常に薄いラミネート片を二層PCBを作成するために必要な全工程を経て処理することで作成されます。ラミネートはドリルで穴を開け、めっきされ、エッチングされて、ボードの第2層を形成する側の特徴を定義します。もう一方の側は固体の銅シートのまま残され、完成したPCBの第1層を形成します。このサブアセンブリは、PCBの他の全層とともにラミネートされます。その結果得られた組み合わせたラミネーションは、多層PCBの外層を作成するために必要な全工程を経て処理されます。シーケンシャル・ラミネーション・ブラインド・ビアは、多くの初期の携帯電話PCBの作成に使用されました。これは、追加のプロセスステップが必要であり、ドリル、エッチング、めっき操作を通じて非常に薄いラミネートを取り扱う際の歩留まり損失が関連しているため、ブラインド・ビアを形成する最も高価な方法です。その結果、ブラインド・ビアが必要な場合には最後の手段として考慮されるべきです。 制御深さドリルブラインドビア:図1からわかるように、制御深さのブラインドビアはスルーホールビアと同じ方法で作成されます。ここでは、ドリルがPCBを部分的にしか貫通しないように設定されます。アートワークの設計者は、ドリルによって貫通される第2層にパッドを配置します。ドリル穴の下にドリル穴と接触する可能性のある特徴がないように注意が払われます。銅は、スルーホールビアの銅がめっきされるのと同時に、ドリル穴にもめっきされます。
PCB基板に厚いFR4か薄いFR4を使用すべきか? PCB基板に厚いFR4か薄いFR4を使用すべきか? 子供と一緒にパイを作ったことがあるなら、皮の厚さが重要であることを知っているでしょう。薄すぎると、中身が散らかってしまいます。厚すぎると、まるでパンを噛んでいるようです。ちょうど良い厚さがパイを美味しくする秘訣です。 PCBの基板材料は非導体であり電流を運びませんが、FR4 PCB基板の厚さは基板の構造強度を決定するだけでなく、電力と信号の整合性にも影響します。設計者としてのあなたの仕事は、望ましい厚さを持つ基板を持つために、適切なセットの積層材を組み合わせることです。そして、PCBでどんな厚さでも達成できるわけではありません。基板の厚さについてどのような厚さを使用すべきか、どれだけ厚くまたは薄くできるか不確かな場合は、FR4の厚さに関するこれらのガイドラインを読んでください。 FR4厚さの設計上の考慮事項 PCBの標準厚さは1.57mmです。一部のメーカーは、0.78mmや2.36mmといった特定の厚さにも対応します。"厚い"または"薄い"FR4と言う場合、通常は1.57mmの標準厚さと比較しています。製造業者のプロセスが対応できる限り、 コアとプリプレグ積層材の厚さを組み合わせることで、好きな厚さのPCBを選ぶことができます。 積層材を選択し、レイヤースタックアップを設計する前に、ボード厚さに関連する以下の設計の側面について考えてください: フォームファクター PCBに厳格なフォームファクター要件はありますか、または非常に薄い筐体に収める必要がありますか?一部の設計では、重いコンポーネントを支えたり、機械的に厳しい環境に耐えたり、機械的サポートに収まるために(軍事および航空宇宙組み込みシステムの 高速バックプレーンが一例です)、厚いボードが必要です。これらの制約により、ボードの厚さが特定の値に限定されることがあります。 コンポーネントとエッジ接続 このデバイスには、特定のPCB厚さを必要とするコンポーネントがありますか?エッジコネクターや大型のスルーホールコンポーネント(高電流トランスフォーマーなど)のようなコンポーネントは、PCBスタックアップが正しい厚さであることを要求します。いくつかのコンポーネントのデータシートやアプリケーションノートでは、さまざまな理由から特定のコンポーネントに対して最小のPCB厚さを指定している場合があり、これらはPCBスタックアップを設計する際に考慮すべきです。 この点が重要な例のコンポーネントとして、SMAエッジコネクターがあります。下に示されているこのコネクターでは、コネクターボディの上部と下部のスポークが、約60-70ミル厚のPCBに対応するように設計されています。この特定のタイプのコネクターを使用したい場合、この値を超えることはできません。その場合、穴取り付けスタイルのSMAを使用する必要があります。この値より下を行くことは可能ですが、その場合、このスタイルのエッジコネクターに関連する機械的強度の一部を失うことになり、これはその主な利点の一つです。 SMAは最もよく知られているエッジコネクタのスタイルの一つですが、表面実装デバイスとしてエッジに取り付ける他のスタイルや、プレスフィット取り付けを可能にするルーティングされた切り欠きを使用するスタイルもあります。おそらく世界で最も一般的なコネクタの一つであるUSBコネクタは、特定のPCBの厚さに依存する後者のタイプのコネクタの主要な例です。 下の画像は、取り付け用に示されたルーティングされた穴とともにUSBコネクタのPCBフットプリントを示しています。これらの穴は標準化されており、PCBのエッジに取り付けられたUSBコネクタの機械図面に示されます。これらの穴を通るタブは、PCBのエッジに沿ってコンポーネントを保持するのに役立ちます。 PCBで使用できる最終的なエッジマウント接続のタイプは、PCBのエッジに沿った金の指であります。これらのボードは、ボードエッジに沿った金の指と接触するスロットコネクタに取り付けられ、これらのコネクタは特定の範囲内で全体のボード厚さが必要です。ほとんどの設計者は、RAMモジュール、PCIeカード、ドーターカード、固体ドライブ、キースロットコネクタに沿った金の指に慣れているでしょう。 トレースインピーダンス トレースとその最も近い基準平面(隣接する層上)との距離は、トレースのインピーダンスだけでなく、多層ボードの誘電体損失のレベルを決定します。薄い層厚を選択する場合、トレースも細くする必要があります。特定のコネクターやICパッケージに対応する特定のトレース幅を設計したい場合は、望ましい幅をサポートするために必要な層厚を考慮するべきです。 必要な層厚がボードの厚さを変えない場合もありますが、これは利用可能なコアとプリプレグのラミネート厚さに依存します。設計で特定の厚さを設定し、その厚さが製造可能であると期待するよりも、製造業者にどのようなラミネートが利用可能かを確認し、それらのラミネート厚さを基に設計することが最善です。 この注意点は、積層材料メーカーから製品リストにアクセスできる場合に限ります。一部の積層材料製造業者は、厚さの値を含む利用可能なコアとプリプレグの長いリストを提供することがあります。製造業者とクリアする限り、これらのリストから選んで自分のスタックアップを提案することができます。ただし、製造業者が材料を在庫しており、このアプローチをサポートするために必要な加工能力を持っていることを確認してください。積層材料ベンダーから見つかるかもしれない例示リストは以下の通りです。このリストは