Workflow Management

Elevate your design process to unparalleled levels of efficiency.

PCB Workflow Management

Filter
Clear
リソグラフィの問題がPCB製造の妨げになることを防止する方法 Thought Leadership リソグラフィの問題がPCB製造の妨げになることを防止する方法 プロジェクターという技術には、本当にイライラさせられることがあります。たとえば、「昔ながらのプロジェクターを使って映画鑑賞会を開こうとバターたっぷりの美味しいポップコーンまで用意したのに、いざ投写してみると映像が歪んでいない個所が1つもない」、「同僚や上司に対して影響力のあるプレゼンテーションをしようとしたところ、映し出された画面では画像とグラフがすべて押し潰されていた」、「授業をしようとしたら、白黒の画像しか投写されなかった」といった具合です。投写された画像が話にならないものならば、すべてをスライドに収まるように何時間もかけたのは無駄だとしか思えません。プロジェクターとディスプレイの位置合わせがうまくできれば、こうした大きなストレスを伴う問題の多くが解消されるでしょう。 PCBの製造でも、プロジェクターと同じような光学的位置合わせが行われます。これはリソグラフィの一部であり、PCBの製造が進む中でパターン層が規定されます。プレゼンテーションのスライドが歪んでしまう事態は避けなければなりません。同様に、PCBの設計ではコンポーネントの配置のずれを阻止しなければなりません。リソグラフィに関して適切に計画を立て、影響を及ぼしたり、問題を引き起こしたりする可能性のある要因について把握する方法を見ていきましょう。 リソグラフィはPCBの製造にどう影響を及ぼすのか PCBの製造で使用されるエッチングや電気めっきのプロセスには、それほど種類がありません。基板が保護用のパターン層でコーティングされていないと、全体が区別なしにエッチング、めっき、またはコーティングされてしまいます。保護用のパターン層に使用されるのは、多くの場合に金属の ステンシル、ポリアミドのシート、またはレジストですが、最も適切な素材が製造プロセスで決定されます。たとえば、金属のステンシルは数枚の基板を製造しただけで損傷して使用できなくなるため、エッチングでは使用しないほうがよいでしょう。 レジストは特定の光(通常は紫外線)の波長に反応します(業界では「感光性」と呼ばれます)。 フォトリソグラフィでは特定の領域が感光され、そこで使用しているレジストが硬化します。処理の次の段階に備え、残りの部分は不純物を除外するために洗い流されます。プロジェクターの画面のように困った影響が出ないよう、どの領域がパターン化されるかを制御するためのマスク(光用のステンシルなど)は光源やPCBと位置合わせをする必要があります。これを怠ると、リソグラフィの問題が現れることになります。 角周辺の弱い光源は製造中に問題を引き起こす リソグラフィにまつわる問題の原因 プロジェクターでは正しく位置合わせできないことがありますが、それは制御できないことが存在するからです。リソグラフィにまつわる問題の潜在的な原因を把握すれば、それをもとに計画を立てることができます。ここでは、下記を念頭に置いてください。 影: 製造業者が清潔な環境を維持していれば、この問題が発生することはないでしょう。ただし、プロジェクターの前に置かれた椅子が邪魔をして画像の一部が投写されなくなるように、マスクに付着した粒子によって影が作られると、その部分のレジストが光によって硬化されません。想定どおりに硬化しなかった箇所は、次の処理段階でエッチングされることになります。 光量と感光: レジストが感光される光の量は、積分のように計算されます。これは、総感光時間に対する光の輝度ですが、タイミングがずれたり、光が弱すぎたりすると、レジストが完全に硬化できるだけの十分な光の量が得られなくなります。また、光源が均一でないこともあります。この場合はレジスト全体で硬化が一様でなくなり、結果にばらつきが出てしまいます。エッチングやめっきの工程が迅速に行われ、製造業者が硬いレジストを確保していれば問題はないかもしれませんが、そうでない場合は次の段階でレジストがはがれ落ち、基板の状態が完全ではなくなってしまう恐れがあります。 アスペクト比: 一般的な問題は、光、マスク、またはPCBのわずかな角変形です。これはプロジェクターが不適切な角度で置かれているために、スライドの上部と下部の幅が異なってしまうのに似ています。PCBでは、レジストのマスクに正しくないアスペクト比(開口部の幅に対するステンシルの厚さ)が適用されたためにこの問題が発生します。基板でこれが起きると、完成した基板の半田接合の品質が低下する可能性が高くなり、これが多くの場合に開回路となります。基板が適切に硬化しないと、内層と外層で 収縮、膨張、反りが異なる割合で発生する場合もあり、アスペクト比の問題を引き起こします。これはフォトリソグラフィにのみあてはまるものではなく、後で基板に反りが発生することもあります。多くの場合、こうした収縮や膨張はPCBの全体的なサイズに影響を受けたCTEの不一致が原因ですが、基板が大きいと問題が発生する傾向が高くなります。 整列: 整列ミス(位置合わせミス)は、パターンが本来の場所からミリメーター単位、またはそれ未満でずれた場合に横方向または縦方向で発生します。要素のサイズが縮小すると、半田パッドやビアがずれてしまいやすくなるため、整列ミスのわずかなずれが大きな影響を及ぼします。許容差が小さい場合は、製造業者が基板の仕様に一致するだけの微細加工能力があるのか、位置合わせを行えるのかを確認するようにしてください。 許容差
IBMの5nmトランジスタにより可能になる、モノのインターネット、深層学習、その他のテクノロジー Thought Leadership IBMの5nmトランジスタにより可能になる、モノのインターネット、深層学習、その他のテクノロジー 私の曽祖母が生まれた頃、普通の人々はまだ馬と馬車で移動していました。彼女は人生の間に、ジェット機、コンピューター、宇宙船を見ることになりました。前世紀にはテクノロジーが急速に発達し、今世紀も同様に急速に発展することは間違いないでしょう。ムーアの法則は、進歩のペースについて1つの指標となってきました。多くの専門家が、ムーアの法則の終焉を予測したにもかかわらず、この法則は現在も続いています。エレクトロニクスの発展の最も新しい証拠は、IBMにおけるトランジスタのサイズの躍進です。IBMは最近、5nmのトランジスタの製造に成功しました。これによって、コンピューターの速度が大幅に増大し、電力の要件が低減するでしょう。この発見は、処理と電力の制限により、いくつかの新しい産業の発展が抑えられている時期にありました。この新しい種類のトランジスタにより、人工知能(AI)、モノのインターネット(IoT)、自律走行車などの新しいテクノロジーが可能になるでしょう。 5nmトランジスタ IBMは先週に発行されたブログ で、自社で新たに開発された5nmトランジスタのアーキテクチャーについて詳説しています。同社は現在の垂直方向のFinFET配置から離れ、水平方向の積層方式を採用することでこの革新を実現しました。この新しい配置により、チップ上のトランジスタの最大数は 200億から300億 にまで増大します。5nmトランジスタには、特に消費電力と処理速度において、現在のテクノロジーと比較して大きな利点が存在します。 あらゆる種類の業界で、低消費電力のチップが熱望されています。 IoTの爆発的な増大 に伴い、小さなバッテリーを使用して高度な計算を実行できるチップが、組み込みシステム用に要求されます。専門家たちは、これらの新しい5nmチップは今日行われている計算を、75%低い電力で実行できると予測しています。これは、携帯電話が 1回の充電で2 ~ 3日 動作することを意味します。 電力削減にそれほど興味がないなら、速度の増大に関心があるかもしれません。IBMのトランジスタは最大の能力で使用した場合、現在のプロセッサーよりも 40%高速 に計算を実行できます。このような計算能力があれば、機械学習や自動運転車などが現実的な可能性となります。 つまり、電力を75%削減するか、処理を40%高速化することを選択できます。このような利点が最も役立つ応用を見てみましょう。 IoTには、5nmチップのような低消費電力プロセッサーが必要です。 人工知能 1950年代にAlan
正確な出力ジョブファイルを使って設計の意図を伝える 正確な出力ジョブファイルを使って設計の意図を伝える ​ 以前のブログ記事 では、実装図面や製造図といった専門的なPCB 設計文書がいまだに手動で作成されていること、そしてAltium のDraftsman などのツールを使って、そのプロセスをどう自動化できるのかについてご紹介しました。残念ながら図面の作成は、完成した設計文書を製造部門にリリースする際に、設計者が直面する難題のひとつに過ぎません。部品表、ガーバーやドリル、ODB++ などの実装ファイルのほか、回路図ページのプリントといった膨大な量のドキュメントや製造ファイルの出力作業も待っています。実際のところ、2017 年に発生する手動作業の分量は予想よりも増えています。これを自動化してくれるソフトウェアを使って、仕事を効率化する手がないでしょうか。 正確な出力ジョブファイルの重要性 設計の意図を正しくはっきりと製造部門に伝えるには、正確な出力ジョブファイルを提供することが極めて重要ですが、出力ファイルを手作業で作成するのは面倒で厄介な作業です。予算内で期日通りに製品をリリースしなければならないときに、何時間もぶっ通しで製造の出力ファイルを作成することは、かなりのストレスを引き起こします。このプロセスを自動化し、他の設計作業にもっと時間をかけられるとすればどうでしょう? チェーンの使用 大半のユーザーが経験するのは、設計の各段階– (回路図の設計やPCB のレイアウトなど)– が単一の実行可能プログラムによって処理される「ポイントツール」や「ツールチェーン」という問題のあるアプローチの利用です。ファイルやネットリストのパスを除き、こうしたアプローチは他のプログラムとほとんど、あるいはまったく関与しません。 設計の内容を包括的に理解してくれるシステムがないため、回路図のプリントや部品表を生成するためには回路図のプログラムを開くことになり、ベアボードや残りの実装ファイルにはPCB ツールが使われることになります。こうした環境でバッチ出力を実行できる場合もあるでしょう– 回路図の生成にはこことここをクリックし、部品表の生成にはこことここをクリックするといった具合になります。 ツールチェーンを突破する PCB
電子ルールチェックで素早く誤りを特定し、修正する Whitepapers 電子ルールチェックで素早く誤りを特定し、修正する 製品ライフサイクル管理(PLM)ツールを使用すると、企業製品に関連するすべてのデータにアクセスできます。これには、すべてのコンポーネントと設計データだけでなく、コスト、優先サプライヤー、その他の関連する企業データなどの他の重要なデータも含まれます。PLMシステムは、データ、プロセス、ビジネスシステム、そして最終的には人々を統合し、拡張エンタープライズに類を見ない透明性を提供します。PLMシステムにより、企業は製品のライフサイクル全体を通じて、概念から設計、製造、サービス、廃棄/リサイクルに至るまで、情報を効率的かつコスト効果的に管理できます。PLMの利点は、入力データの良さによってのみ実現されますが、これはしばしば企業全体の受け入れと統合の課題によって損なわれます。 概要 歴史的に、ほとんどのPLMシステムは機械設計から始まりました。そのため、初期のデータモデルはECADに適していませんでした。その上、ECADデータをPLMに取り込む手段は、ほとんどの電気設計者にとって煩雑で異質です。PLMサプライヤーはこの経験を改善するために努力しており、多くの場合、インターフェースを作成するために第三者に依存しています。PLMベンダーが投資したにもかかわらず、ECAD BOM、組立、製造、バリアント、およびその他のコンテンツをPLMに取り込むプロセスは、多くの企業にとって依然としてコストと効率の課題です。 検索、使用、公開 EDAConnectの唯一の機能は、ECADとPLM(図1)の間に正確で使いやすく直感的な接続を提供することです。これには永続層がなく、電気およびエンタープライズドメインからのインデックスとしてデータを保存し、単一の情報源を保証します。EDAConnectの主な強みは、設計者にとっての使いやすさと直感的なワークフローです。 図1: EDAConnect — AltiumからAgileへ エンジニアは、企業データが複数のソースにまたがっているため、適切な情報を探すのに時間の30〜40%を費やしています。EDAConnectは、ブラウザベースのインターフェースを使用した最新の検索技術を利用して、エンジニアが必要な情報を見つけることを可能にします。この直感的なインターフェースは、エンジニアリングだけでなく、それ以外のユーザーにもアクセスしやすくしています。インターフェースはAmazonに似ており、キーワード、パラメータ、またはその組み合わせによる検索をサポートしています。EDAConnectは、すべての製品データコンテンツのエンタープライズビューを提供します。 必要な情報が見つかったら、ユーザーは部品とBOMコンテンツを比較して変更を理解したり、再利用のために評価したりすることができます。選択した部品はショッピングカートに追加され、ECAD環境に重要な部品選択がプッシュされて使用されます。 EDAConnectは、ECADライブラリと同期して重要なPLMメタデータも保持します。エンジニアがまだ使用が承認されていない部品を見つけた場合、EDAConnectはエンタープライズ部品リクエストのプロセスを簡素化します。承認されると、PLM部品情報を回路図で使用できます。適切な部品を使用するためには、CADライブラリになくPLMと同期していない場合(つまり、最初に欲しかった部品が利用できないため、代替品を探さなければならない;代替品がCADにまだないため、CADモデルを作成またはリクエストしなければならない)、デザイナーは2〜3倍の時間がかかることがあります。 エンジニアが設計をPLMに公開する準備ができたとき、そのプロセスはAltium Designer内のメニューからネイティブに駆動され、同じくらい簡単です。ウィザードベースのインターフェースがデザイナーを公開プロセスを通じて案内し、必要なデータを収集し、ECOを生成し、PLMでサポートデータ構造を作成します。手動プロセスは3〜5倍の時間がかかります。さらに、手動プロセスでは、コンテンツのリリースに複数の反復が必要になる場合があります。EDAConnectの自動化は、リリースからPLMへの時間を1時間から数分に短縮し、1サイクルで行います。 結論 EDAConnectは、 Altium DesignerとAgile間の相互作用を自動化し、3つのシンプルなコンセプトに焦点を当てています: Find