Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
リソース&サポート
Renesas / Altium CEO Letter To Customers
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Courses & Certificates
Training Previews
On-Demand
Instructor-Led Trainings
大学・高専
Programs
Educator Center
Student Lab
Altium Education Curriculum
オンラインストア
Search Open
Search
Search Close
サインイン
Open Source Laptop
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
Open Source Laptop
Open Source Laptop
Overview
All Content
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
ソフトウェア
Altium Designer
Altium 365
コンテンツタイプ
ポッドキャスト
オープンソースプロジェクト概要:ラップトップとRaspberry Pi CM4モジュール
1 min
Podcasts
このエピソードのAltium OnTrackポッドキャストでは、ホストのZach PetersonがOpen Visions TechnologyのLukas Henkelと座談し、オープンソースのノートパソコンとRaspberry Pi CM4モジュールの代替品となる2つの画期的なオープンソースプロジェクトを探求します。 オープンソースハードウェアの最新進歩を発見し、これらの革新的なプロジェクトがDIYコンピューティングの限界をどのように押し広げているかを学びましょう。 エピソードを聴く: エピソードを見る: エピソードのハイライト: ウェブカメラデザイン:ノートパソコン用のオープンソースウェブカメラを設計する際の課題と革新。 ノートパソコンデザインの課題:オープンソースノートパソコンの開発中に直面した主要な障害。 ノートパソコンプロジェクトから学んだ教訓:オープンソースノートパソコンプロジェクトに取り組む中で得た洞察と教訓。 この種のプロジェクトを始めるためのアドバイス:同様のプロジェクトを始めようとしている個人への推奨事項とガイダンス。 オープンソースRaspberry Piの概要とデモ:オープンソースプロジェクトでRaspberry Piを使用する概要とデモンストレーション。 さらに多くのリソース:
記事を読む
設計フェーズ - リッドアセンブリ電子部品 パート2
1 min
Altium Designer Projects
オープンソースラップトッププロジェクトシリーズへようこそ!これまでに、蓋組み立て電子部品の機能とコンポーネント選択について議論し、回路図のキャプチャについて詳しく見てきました。そして、PCBレイアウト設計のためのプロジェクトの準備が整いました。 このアップデートでは、ウェブカメラボードのPCB設計に取り組みますが、いくつかの予想される課題があります。例えば、ボードの全体的な小さなフォームファクターを扱うことや、顕微鏡で見るようなウェブカメライメージセンサーをブレイクアウトすることです。 イメージセンサーパッケージ ウェブカメライメージセンサーとマッチングフットプリントをより詳しく見てみましょう。イメージセンサーOV2740は、いくつかのパッケージで利用可能です。イメージセンサーは、通常、PCBに直接接着またははんだ付けされる裸のダイとして販売されます。その後、センサーは必要なすべての信号をブレイクアウトするために、薄い金のボンディングワイヤーを使用してボードに接合されます。 PCBに接合されたOV2740ダイ 完全にパッケージされたセンサーではなく、裸のダイを使用する理由はいくつかあります。最も顕著な3つの理由は、コスト、フォームファクター、および光学特性です。まず、コストを考えてみましょう:イメージセンサーを光学性能に影響を与えずにパッケージングすることは、高価なプロセスです。パッケージなしでセンサーダイを直接PCBに接合することで、パッケージングコストを節約できますが、組み立て/製造コストは高くなります。PCB上の光学コンポーネントを接合するには、通常、クリーンルーム設定および接合可能なPCB表面仕上げが必要です。これらのオプションは製造コストを押し上げるため、直接ダイアタッチは通常、大量生産または高度に特殊化された製品にのみ実行可能です。 直接ダイアタッチ方法を選択するもう一つの良い理由は、特にラップトップやスマートフォンのような密集したカメラソリューションで、全体的なソリューションの高さを減らすことです。Z軸でのわずかなミリメートル単位の差が重要です。イメージセンサーのアクティブダイがボード表面から0.5mm上にある場合、その余分な高さはレンズアセンブリによって補償されなければなりません。これは、しばしばイメージセンサーとレンズのスタック全体の厚みを増加させる結果となります。 さらに、レンズアセンブリの取り付けが容易であることは、裸のセンサーダイを利用するもう一つの説得力のある理由となります。歪みのない画像を得るためには、センサーダイがレンズアセンブリの軸に対して完全に垂直でなければなりません。レンズアセンブリは、PCB表面に機械的に参照され、その表面は画像センサーダイと完全に平行でなければなりません。例えば、画像センサーがBGAコンポーネントとしてパッケージされている場合、それが基板表面に対して完全に平行であることを保証することは困難です。この効果はレンズアセンブリによって補償される必要がありますが、直接ダイアタッチアプローチでは通常存在しません。 私たちのノートパソコンの設計では、製造コストの増加のため、センサーダイを直接PCB表面に取り付けることは選択肢ではありません。したがって、私たちはOV2740を細ピッチBGAコンポーネントとして使用します。 BGAパッケージのOV2740イメージセンサー イメージセンサーのフットプリント センサーパッケージは通常のBGAパッケージではなく、マルチピッチグリッドアレイです。私たちの場合、これはX軸とY軸ではんだボールのピッチが異なることを意味します: イメージセンサーのBGAフットプリント スクリーンショットは、BGAフットプリントがX軸で0.53mmのピッチを、Y軸で0.48mmのピッチを使用していることを示しています。これは、基板の設計と製造技術の選択にいくつかの意味合いを持ちます。ほとんどのPCBプロバイダーは、標準プロセスで0.1mmのトレース幅と間隔を製造できます。高い技術クラスに追加費用を支払うことなく標準の設計ルールを選択したい場合、センサーピンをY軸でのみブレイクアウトすることができます: BGAコンポーネントのブレイクアウト X軸のピンピッチがわずかに大きいため、2つのパッドの間に0.1mmのトレースを便利に配置することができます。X軸の第2行もブレイクアウトしたい場合は、ほとんどのメーカーが標準の設計ルールで対応できない0.09mmのトレース間隔を選択する必要があります。 イメージセンサーには5行あり、最も外側の2行のピンを問題なくブレイクアウトできます。中央に1行残っており、その行は上層からは到達できません。パッド間に0.4mmのパッドと0.2mmのドリルを持つVIAを配置することは、VIAからパッドまでの間隔が十分でないため、オプションではありません。これは、ほとんどの標準的なPCB設計ルールの限界です: VIAを備えたBGAフットプリント この時点で、PCB製造プロセスに追加のステップを使用できます。それは、VIAのプラグとキャップをすることです。キャップ付きVIAを使用することで、PCB組み立て中に信頼性の問題を引き起こすことなく、パッド内に直接VIAを配置できます。 この方法で、イメージセンサーのエスケープルーティングは次のようになります:
記事を読む
設計フェーズ - リッドアセンブリ電子部品 パート1
1 min
Altium Designer Projects
オープンソースのラップトッププロジェクトシリーズへようこそ! 前回のアップデートでは、さまざまなセンサーと電子アセンブリ自体をラップトップディスプレイのベゼルに統合する方法について説明しました。 使用するPCB技術と、ウェブカメラPCBの取り付けハードウェアについて決定しました。このアップデートでは、ウェブカメラモジュールの電子およびPCB設計に焦点を当てます。 完全に組み立てられたウェブカメラ/センサーPCB メインボードインターフェース まず、ウェブカメラ/センサーPCBがシステムのメインボードとどのようにインターフェースされるべきかを考えてみましょう。メインボードと確立しなければならない論理的な接続が4つあります: 1. イメージセンサーインターフェース まず、ウェブカメラ、またはイメージセンサーインターフェースです。使用するイメージセンサーはOmnivision OV2740です。このセンサーは、秒間60フレームで高解像度1080pの画像を提供します。画像データストリームはMIPI-CSI2インターフェースを介して送信されます。センサーを制御するためには、標準のシリアルSCCBインターフェースが使用されます。このインターフェースと並行して、いくつかのグローバル制御ラインも必要です。 通常、内蔵および外付けのウェブカメラは、UVCプロトコルをサポートするUSBインターフェースを介して接続されます。UVC仕様はUSB Video Device Classの略であり、ハードウェア固有のドライバーなしでビデオストリーミングデバイスを使用できるようにします。これにより、外付けウェブカメラのプラグアンドプレイ操作が可能になります。USBインターフェースを使用するもう一つの利点は、デバイスとのインターフェースにデータペア1つ、電源およびグラウンド接続のみが必要であることです。これにより、システム内でルーティングする必要がある信号の量が最小限に抑えられ、コネクタの複雑さが減少し、システム全体の信頼性が向上します。USB UVCデバイスまたはモジュールのもう一つの利点は、任意の他のUSB UVC準拠デバイスと交換できることであり、この場合、私たちのラップトップ設計ではウェブカメラボードを簡単に新しいバージョンにアップグレードできます。 しかし、オープンソース設計でUSB UVC準拠デバイスを使用する際には問題があります。画像センサーのCSI出力をUSB UVC準拠インターフェースに変換するには、カスタムファームウェアとISPを備えたASICが必要です。RealtekやSONIX Technologyなどの大手ICベンダーからは、統合ソリューションがいくつか提供されています。しかし、これらのICのドキュメントは自由に利用できず、そのためオープンソースのラップトップには適していません。
記事を読む
設計フェーズ - リッド組立機構 パート3
1 min
Altium Designer Projects
オープンソースのラップトップ蓋組み立てデザインの第3部へようこそ!前回は、ウェブカメラモジュールとそれに接続されたセンサー全てをラップトップ蓋のベゼルに統合する一つの方法を見てきました。 前回の記事で提示されたアプローチにはいくつかの課題があることがわかりました。柔軟なPCBを使用することに伴う追加の組み立ておよび製造の複雑さが、リジッドボードのみを使用する別のオプションへと導きました。さあ、この実装がどのように機能するか見てみましょう。 スクリーンベゼル内に取り付けられたウェブカメラPCB 周囲光センサーのドーターボード すでに特定された課題の一つは、周囲光センサーの上部とディスプレイガラスの開口部との距離を減らす必要があることです。光センサーとカバーガラスとの最大距離は、ディスプレイガラスの視認窓の開口径によって与えられます。この関係については、蓋組み立てデザイン更新シリーズの 第1部で見てきました。 ディスプレイガラスのシルクスクリーンの開口部を可能な限り小さく保つ必要があるため、それが見えないようにするために、直径1mmに限定しなければなりません。これは、センサーの上部からディスプレイガラスまでの最大距離が1.2mmでなければならないことを意味します。硬質のウェブカムPCBを使用しているため、基板はカバーガラスの下に4ミリメートル位置します。光センサーの高さは0.8mmのみで、約2mmの隙間を何とか埋めなければなりません。 2mmはPCBの標準的な厚さです。小型のPCBに環境光センサー、そのデカップリングキャパシタ、およびI2Cバス用の2つのプルアップ抵抗を取り付けることができます。その後、このモジュール全体をウェブカム基板にはんだ付けすることができます。 将来のリビジョンで光センサーを交換することにした場合、ウェブカム基板を再設計することなく、小型モジュールを変更することができます。 センサーモジュールの設計は、上側に光センサーと受動部品、下側にLGAパッドの接点があるシンプルな2層基板です。ここに、このモジュールの回路図とPCBレイアウトがあります: センサーは、ピックアンドプレースマシンのピックアップポイントとして機能するようにモジュールの中央に配置されます。部品の質量中心とマシンノズルを合わせることで、PnPマシンの高加速でも信頼性の高いピッキングと配置を保証します。 ウェブカムモジュールのフットプリントは、周囲光センサーモジュールのアウトラインを超えて広がっています。これにより、組み立てラインの最後にある自動光学検査機が正しいアラインメントを確認し、モジュールの各パッドに十分なはんだがあることを保証できます。 ウェブカムモジュールに使用されるフットプリントは、光センサーモジュールのアウトラインを超えて広がっています 周囲光センサーモジュールがウェブカムボードにはんだ付けされています 取り付けポイントのドーターボード 取り付けポイントには同様のドーターボードアプローチを採用できます。しかし、薄いPCBを薄い金属片に固定する際には、設計上の課題が生じます。対応するネジ径に必要な最小のねじ長を達成することが懸念事項となります。 最小ねじ長に加えて、ねじは盲孔に一定の深さまでしか切れないことを念頭に置く必要があります。タップは穴の底までねじを切ることができないため、最小ねじ長には固定のオフセットを加える必要があります。 これらの要因をすべて考慮に入れると、取り付け穴にはかなり深いねじ山を提供する必要があります。蓋の材料の厚さは1mmに固定されているため、取り付けポイントに何らかのスタンドオフを提供する必要があります。 この問題に対処する方法の一つとして、小さなダウターボードを追加することにより、ウェブカムモジュールの厚さを局所的に増加させることができます。これらのボードもまた、上部と下部の両方に銅パッドを備えた2mmの厚さを持っています。周囲光センサーボードと同じスタックアップを使用することにより、これらのダウターボードを同じ生産パネルで製造することができます。 局所的なボードの厚さが2.8mmになると、ディスプレイ蓋に標準の取り付け穴を使用することができます:
記事を読む
設計フェーズ - リッドアセンブリのメカニクス パート2
1 min
Altium Designer Projects
オープンソースのノートパソコンの蓋の組み立てデザインの第2部へようこそ!前回は、ノートパソコンの蓋の基本的なデザインコンセプトと、ディスプレイ画面にさまざまなセンサーを統合する方法について詳しく見てきました。 この道を引き続き探求し、ディスプレイパネルの上にセンサーPCBを統合する2つの方法を探ります。これは蓋の残りの機械設計に直接影響を与えるため、この課題にどのように取り組むことができるか見ていきましょう。 マザーボードに接続するためのFPCを備えたウェブカムPCB まず、複数のセンサーを統合する必要があることを思い出してください。これには、2つのMEMSマイク、環境光センサー、カメラセンサー、そして7つの静電容量式タッチパッドが含まれます。さらに、各キーに1つのLEDを使用してタッチパッドの均一なバックライトを確保する必要があります。各センサーには独自の高さ要件がありますが、すべてのセンサーはカバーガラスの下側を基準にする必要があります。これらすべてのセンサーを単一のPCBに搭載するためには、複数の高さゾーンを持つボードを設計する必要があります。 異なるセンサーの高さ要件は仕様書に明確に記載されていますが、バックライト付き静電容量式タッチキーはもう少し複雑です。ウェブカムボードの形状と統合に焦点を当てる前に、静電容量式タッチセンサーについて対処しましょう。 静電容量式タッチキー 静電容量式タッチキーは、マイク、ウェブカム、またはWiFi接続など、特定のプライバシーに関わる機能を有効または無効にすることをユーザーに許可するべきです。これらの機能の有効化または無効化は通常、オペレーティングシステムによって処理されます。私たちは、ソフトウェアレイヤーの透明性の欠如により、OSの介入なしにこれらの機能ブロックへの電力を遮断できるハードウェアでこのソフトウェアレイヤーを無効にする能力を持ちたいと考えています。 通常、カメラやマイクを覆うためには、単純なハードウェアスイッチやスライダーが使用されます。しかし、全面がガラスの当社のノートパソコンデザインでは、これはオプションではありません。代わりに、静電容量式タッチセンシングを通じて有効または無効にできる画面上部のバックライト付きアイコンを配置します。
この結果を達成するためには、1mm以上のカバーガラスの厚さを通してタッチを感知する信頼性の高い方法が必要です。タッチ検出用のASICは、センサー電極とタッチ入力の間の距離が増加するにつれて、より高い感度を持つ必要があります。感知パッドとタッチ入力の間にかなりの距離があるシナリオでは、感度が非常に高くなければならないだけでなく、全体のセットアップの信号対雑音比も十分でなければなりません。大きな距離を超えてタッチ入力を感知することは可能ですが、誤ったタッチアクションを引き起こしやすくなります。感知距離が増加するにつれて、実際の有用な信号は感知ASICのノイズフロアに近づきます。 中程度の感度と信号対雑音比を持つ低コストの感知ASICを使用するためには、感知電極を可能な限りタッチ入力に近づける必要があります。 私たちの場合、これは電極をカバーガラスの裏側に直接配置することを意味します。必要なのは、ガラスの裏側に薄いPCBを取り付けることだけです。しかし、これには新たな課題が生じます:銅の電極が邪魔をしている状態で、どのようにしてアイコンを照らすかです。 解決策として、アイコンの輪郭に沿って銅を配置し、カバーガラスに印刷されたタッチアイコンよりも0.3mm大きいカットアウトをボードに残すことになります。 良いニュースは、FPCの製造プロセスが私たちの味方をしていることです。少なくとも1mmの直径を持つフライス工具を使用する硬質PCBとは異なり、FPCはレーザーで切断されます。これにより、最小のコーナー半径なしでより複雑な特徴を実現できます。さらに、レーザーパスは通常、従来のフライス加工と比較して銅のアートワークに対してより厳密な位置決め許容誤差を提供します。 カバーガラスに印刷されたアイコン アイコン用のカットアウトを持つタッチ感知ボード カバーガラスに印刷されたタッチアイコンのカットアウトが完璧に合致していることに気づくでしょう。アイコン内のコーナー半径は、場所によっては0.2mmしかないことがありますが、レーザーカットプロセスにとっては問題ありません。
記事を読む
設計フェーズ - リッドアセンブリのメカニクス パート1
1 min
Altium Designer Projects
オープンソースのラップトッププロジェクトへようこそ!このアップデートでは、ラップトップの蓋の機械設計について詳しく説明します。以前、利用可能なディスプレイパネルと、私たちのアプリケーションに最適なものを探索しました。探索は成功し、パネルのテストも成功しました!今、難しい部分が始まります:すべてを頑丈で機能的でありながら見た目も良いシステムに収めることです。 このアップデートのタイトルは 蓋組立機構ですが、これから見るように、電気設計と機械設計の境界線はかなり曖昧になります。しかし、それがこのようなプロジェクトの性質です。機械設計の多くの決定が電気設計に直接影響を与え、その逆もまた然りです。もちろん、両方の側面を同時に見なければなりません。 ウェブカメラPCBのリビジョン1.0 材料と製造方法 最初に答える必要がある質問の一つは、どの材料を使用し、どのように蓋を製造するかです。これは、蓋にモデル化できる形状と関連するコストに直接影響を与えます。最後の点は、執筆時点で非常に高いボリュームの製品設計を見ていないため、特に重要です。これは、高い工具費用を伴う製造技術の選択を制限します。したがって、シートメタル成形プロセスやあらゆる種類の鋳造技術は問題外です。両方の製造技術には、高価な型または打ち抜きダイが必要であり、低数量ではコスト効果がありません。 現代的で頑丈な外観を提供する唯一の実行可能な選択肢は、固体のアルミニウムブロックから蓋を機械加工することです。CNC加工されたプロトタイプは比較的安価で、リードタイムも短いです。機械加工部品の設定コストは、ある程度まで機械のプログラミングを自動化できる現代のCAMプログラムのおかげでかなり適度です。 CNC加工が製造プロセスの選択となることがわかったので、3Dモデリングに進むことができます。 蓋の3Dモデリング まず、ディスプレイパネルを統合することから始めます。その目的のために、Frameworkが提供するパネルと取り付けブラケットの3D STEPファイルを使用できます: https://github.com/FrameworkComputer/Framework-Laptop-13/tree/main/Display まず、基本的な蓋の形状は、角が丸い長方形で、ディスプレイパネル用のポケットがあります: ノートパソコンの蓋の基本形状 全体が一つのアルミニウムブロックから加工されるため、ディスプレイの取り付けに必要な機能をすでに設計できます。ディスプレイにはブラケットが事前に取り付けられているため、パネルを取り付けるためにはM2の内部ねじと位置合わせピンを提供するだけで済みます。 スペーサーの高さは、パネルがアルミニウムトレイに平らにならないように選ばれます。代わりに、パネルと蓋トレイの間には1mmの隙間があります。これは、蓋を開けたときにアルミニウムトレイがたわむとき、パネルの敏感な背面が直接アルミニウムトレイに接触しないようにする非常に重要な設計機能です。 ノートパソコンの蓋の曲がり そもそも、なぜノートパソコンの蓋が曲がるのでしょうか?デザインの目標は、ディスプレイパネルを保護し、使用中に曲がらない薄くて頑丈な蓋を作ることではないのでしょうか? それが理想的なケースであっても、現実には重量、厚さ、剛性の間で良い妥協点を見つけなければなりません。全く曲がらない非常に頑丈な蓋を構築することができますが、それには高い材料の厚さが必要で、結果としてノートパソコン全体の厚さが増し、重量も大幅に増加します。私たちは、たわみを制御しながら、できるだけ薄く軽い蓋を作りたいと考えています。 CADモデルに対して弾性シミュレーションを実行することで、理想的な材料の厚さを近似することができます。ノートパソコンを開くために必要なおおよその力を知っているので、それをシミュレーションの入力として使用して、蓋のたわみを計算することができます。カバーガラスの取り付け方法がまだわからないため、シミュレーションには含まれません。
記事を読む
コンセプトフェーズ - リッドアセンブリデザイン パート2
1 min
Altium Designer Projects
オープンソースラップトッププロジェクトにおけるリッドアセンブリデザインの旅を続けています。 テストアダプターの設計 — レイアウト これで、実際のハードウェアデザインに取り組む段階になりました。このボードのレイアウトは直接的で、特に注意を払う必要があるのは高速インターフェースが1つだけです。 DisplayPortインターフェースは仕様により最大20UIまでのディスキューが可能です。UIはUnit Intervalの略で、ビットレートの逆数です。私たちが使用している2.7Gbpsのリンクでは、UIあたり370psを意味します。最大20UIまでのディスキューが可能ですが、ハードウェアチェックリストではペア間スキューの最大値を+/- 1UIまたは740psと推奨しています。 ペア内スキューはさらに重要で、許容されるスキューは10ps未満です。 DisplayPortメインリンク(データペアML0 – ML3の4つ)の差動インピーダンスは100オームで制御する必要があります。 AUXチャネルは、はるかに低速の1MHzで動作します。簡単にするため、PCB設計ルールに関してはAUXチャネルをメインリンクの一部として扱うことにします。 通常、ルーティングルールを設定する際には、レイヤースタックマネージャーで定義されたインピーダンスプロファイルを使用したいと考えます。しかし、このPCBでは、インピーダンス値が既に検証され、PCBメーカーによって提供されているため、この機能を使用していません。 メインリンクの正確な遅延値を得るために、X-シグナルを使用してコネクタからコネクタへの正しい遅延を抽出し、シリーズ抵抗を越えてギャップを埋めることができます。 DPメインリンクのために強調表示されたX-シグナル クイックチップ#1 - シルクスクリーン機能の作成 レイアウトに入る前に、DisplayPortコネクタのフットプリントのシルクスクリーン機能を作成するためのクイックチップを共有したいと思います。シルクスクリーンには、その部品を特定しやすくするために、部品のアウトラインやその他の重要な特徴が表示されるべきです。これは、組み立て図面の製造出力用に別のアセンブリ層が使用されていない場合に特に重要になります。
記事を読む
Pagination
First page
« First
現在のページ
1
ページ
2
Next page
Next ›