PCB Design and Layout

Create high-quality PCB designs with robust layout tools that ensure signal integrity, manufacturability, and compliance with industry standards.

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
制御インピーダンスルーティングのためのPCB設計ガイドライン PCBルーティング中の制御インピーダンスに関するPCB設計ガイド 1 min Thought Leadership 1831年6月、サー・ジェームズ・クラーク・ロスはカナダ北部のブーシア半島で北磁極を発見しました。しかし、「発見」という言葉が示すように、北磁極が静止しているかのように思われがちですが、実際には北磁極と南磁極は絶えず移動しています。地球の磁場は時間とともに変化し、その変化が起こると、極の位置も移動します。年間55kmの移動速度を考えると、「極急行」という新たな意味が出てくるかもしれません。 しかし、PCB内での信号の伝達を考える際には、一方の極から他方の極への移動にかかる時間、費用、エネルギーを心配する余裕はないかもしれません。トレースのルーティングやトレース幅は重要ですが、回路基板のグラウンドプレーン上のトレースは、差動インピーダンスの追跡を難しくすることがあります。トレースや制御インピーダンスのルーティングにおいて、PCB設計ソフトウェアを最大限に活用する方法を学ぶことが役立ちます。 複雑なインピーダンスの探求 インピーダンスに関して、「極性」という概念は異なるタイプの探求を意味します。複素インピーダンスは、多成分AC回路を扱う上で重要なツールです。これらの回路における電圧や電流を正弦と余弦で表す代わりに、インピーダンスを複素指数またはとして表現できます。インピーダンスは、特定の周波数での単一の複素指数に対する電圧/電流比として機能します。 そこから、個々の回路要素のインピーダンスを純粋または実数の虚数として表現できます。これにより、理想的なインダクタの純粋に虚数のリアクティブインピーダンスは次のようになります: 一方、理想的なキャパシタの純粋に虚数のリアクティブインピーダンスは次のように現れます: 純粋または虚数への移行には、実軸に沿った抵抗を持つ複素平面の使用が必要です。ここで、キャパシタとインダクタのリアクタンス値は虚数となります。虚数のインピーダンスはインピーダンスのリアクティブ成分を提供し、リアクタンスによって発生する位相の変化を評価することを可能にします。 RLおよびRC成分の直列組み合わせでは、ベクトルの成分として成分値を加算できます。複素数として、これらの値は抵抗と同じ単位を持ちます。 複素インピーダンスの極形式 RL回路とRC回路の複素表現の極形式は、電圧と電流の振幅と位相の関係を示す二次元座標系として現れます。平面上の各点は、基準点からの特定の距離と基準方向からの特定の角度にあります。基準点は極として機能し、基準方向における極からの光線は極軸を指します。極からの距離は半径または極座標であり、角度は極角を表します。 極形式では、複素インピーダンスの大きさは電圧振幅と電流振幅の比と等しくなります。複素インピーダンスの位相は、電圧よりも電流の位相シフトと等しくなります。方程式の形では、インピーダンスは次のように現れます: 大きさは電圧差振幅と電流振幅の比を表し、引数Ɵは電圧と電流の位相差を与えます。一方、は虚数単位を表します。複素インピーダンスの極形式を使用すると、インピーダンス量の乗除が簡単になります。 制御インピーダンスPCBルーティングのためのトレースを計画できることが必要です PCBインピーダンスコントロール 複素インピーダンスとその極形式に関する非常に簡潔な議論は、 インピーダンスの計算に伴う数学的な複雑さと、PCB設計におけるインピーダンス制御に遭遇する困難な問題の両方を強調しています。多層の高周波回路は、伝送線として機能する多数のビアと分岐を含んでおり、ソースと負荷の間でエネルギーの反射が発生する可能性があるため、問題はさらに困難になります。回路のタイプや複雑さに関わらず、信号経路に沿った全てのインピーダンスが一致する場合にのみ、最大の信号伝送が発生します。 回路基板の設計に最良の実践を用いることで、トレースが適切に配線され、インピーダンスが適切に一致するようにすることができます。ソースの出力インピーダンス、トレースのインピーダンス、および負荷の入力インピーダンスを一致させるには: コンポーネントのインピーダンスを一致させる トレースの特性(長さ、幅、厚さなど)を測定する 所望のインピーダンスを達成するためにマイクロストリップを使用する 記事を読む
リジッドフレックスのコマンド設定とレイヤースタック設計 リジッドフレックスのコマンド設定とレイヤースタック設計 1 min Blog 競合他社のツールをご利用のユーザー 競合他社のツールをご利用のユーザー 競合他社のツールをご利用のユーザー PCB設計に首を突っ込むと、自宅の電子機器が実際にどのように機能しているかに気づき始めます。DVDドライブからノートパソコンのモニターまで、折りたたむことができるほぼすべてのものが、リジッドフレックスPCBによって可能になっています。 リジッドフレックスPCB設計は、それを作成するために使用しているソフトウェアによっては難しいものになることがありますが、設計の終わりには、あなたのプリント基板は体操選手のように曲がったり柔軟になったりします。 最初に、リジッドフレックスPCBは他のPCBと同じように見えるかもしれません:回路、銅、ビア;しかし、回路の厚みに入ると、ボードのフレックスPCB部分とリジッドPCB部分の両方を通して作業できる信頼できるソフトウェアを持っていることが望ましいです。 現在では、多層カウントが4から30に達し、フォームファクターがより専門的で要求が厳しくなるにつれて、リジッドフレックスボードは電子機器により頻繁に現れます。設計を満たすために必要な回路は、非常に難しいものになるかもしれません。頭をかかえたり、レイヤーを手作業で設定したりしないでください。統合設計環境で作業するとき、レイヤースタックを定義することは簡単で正確です。 レイヤースタックアップ、リボンデザイン、およびルーティング リジッドフレックス回路は、フリップフォンに限定されるものではありません。多くのデバイスでは、リジッドフレックスリボンを使用して、単一のデバイス内の複数のボード間で接続を行います。奇妙な形状の電子パッケージや、ラップトップのような折りたたみコンポーネントを持つデバイスは、通常、リジッドフレックスボードを使用して、一つのコネクタを通じて高密度の接続をルーティングします。これは、乱雑な銅線の束を使用するよりも優れています。 リジッドフレックス回路を設計する際には、常に製造業者に相談し、その製造能力を評価するべきです。設計が製造ラインから実際に出てきて、要件に従って動作することを確認したいと思います。リボンフレックスが静的か動的かを決定し、リボンが多層ルーティングを必要とするか、およびプリント基板間でリボンをどのように接続したいかを決定する必要があります。 一部のメーカーは、その能力に応じて構築された事前設定されたスタックアップファイルを送信します。PCB設計ソフトウェアは、これらのスタックアップファイルをインポートして再利用できるようにするべきです。これにより、リジッドフレックス設計がメーカーの要件を満たし、製造に移行する前に再設計を防ぐのに役立ちます。これはまた、大きな時間の節約になり、回路とPCBの推測作業をなくすのに役立ちます。 リジッドフレックス設計を行うには、直感的なスタックマネージャーと強力なルーティングツールを備えたPCB設計ソフトウェアパッケージが必要です。スタックマネージャーは、PCBの各リジッド部分とフレックス部分での材料配置を定義します。レイヤーを定義し、フレックスPCBが配置されたら、ルーティングツールはリジッドボード上での作業と同じくらい簡単にフレックスリボンを越えてルーティングできるようにする必要があります。 Altiumでのリジッドフレックス設計のためのレイヤースタックアップ 問題の原因を知る フレックススタックアップを定義するためにスタックアップマネージャーで作業するとき、スタックマネージャーは必要なコントロールをすべて単一のウィンドウに含む直感的なインターフェースを使用するべきです。スタックアップを複数のウィンドウに分けると生産性が低下し、スタックアップを定義するための必要なコマンドを見つけるのが難しくなります。スタックアップを構築するとき、それは実際にあなたが構築しているデバイスに似ているべきであり、トップとボトムのカバーレイの奇妙な配置ルールを課すべきではありません。 同じ問題がグラウンドとパワーレイヤーにも適用されます。ほとんどのリジッドフレックスボードは、PCBの別のセクションであったかのように、フレックスリボンを越えてパワーとグラウンドが広がっています。これは、再び、スタックマネージャーがその真価を示す場所です。スタックアップを構築するとき、残りのスタックアップと同じウィンドウでパワーとグラウンドレイヤーを定義できるべきです。 フレックスゾーンが外部コネクターなしでPCBのリジッド部分に接続する場合、トランジションゾーンを定義する必要があります。奇妙なことに、いくつかのソフトウェアプログラムでは、このゾーンを定義するための特別なプロセスが作成されています。実際には、トランジションゾーンはフレックス領域とは少し異なるスタックアップに過ぎず、この領域を定義するために独自のコマンドセットが必要になるべきではありません。 リジッドフレックス設計の正しい方法 リジッドフレックス設計は、各ボードとフレックス領域のレイヤースタックを定義することから始まり、直感的なレイヤースタックマネージャーが必要です。ボードとリボンの各レイヤー、オーバーレイとポリイミド層を定義し、これらの層が互いにどのようにインターフェースするかを定義する必要があります。リジッド領域とフレックス領域を定義するのに5つの異なるウィンドウと数十回のクリックを要するべきではありません。これらすべては、必要なコマンドとオプションを含む1つの簡単にアクセスできるウィンドウで行うべきです。 リジッド部分とフレックス部分のレイヤースタックを定義したら、PCBレイアウト内で直接フレックス領域を定義できるようになるはずです。ボードの全体的なアウトラインを定義したら、ボードの各部分にレイヤースタックを迅速に割り当てることができるはずです。リボンを横切る接続のルーティングは、単一のボード内や任意の回路内のルーティングと変わらないはずです。 スタックアップを定義し、コンポーネントを配置し、ボードと回路間の接続を定義したら、徹底的な設計ルールチェック機能を使用して設計を監査できるはずです。ボードにとって不可欠なルールをカスタマイズできるはずであり、設計ルールチェック機能はエラーや競合を読みやすいウィンドウで表示するはずです。 設計の検証は、設計ルールに対するチェック以上のものを必要とし、シミュレーションを通じて問題を診断し、3Dビューアーでフォームファクターを検証することが求められます。統合環境で作業することで、外部プログラムに移動することなく、設計のためのシミュレーションを直ちに構築して実行できます。リジッドフレックスボードのフォームファクターとクリアランスは、デバイスの3Dビューを使用して検証でき、異なるプログラムにエクスポートすることなくすべて行うことができます。 統合設計環境における3Dビューアーの可能性 記事を読む
Altium Designer でのメニュー変更と単位の切り替え Altium Designer でのメニュー変更と単位の切り替え 1 min Thought Leadership 子供の頃、私がいつも安全で安心を感じた場所は家でした。外で何が起ころうと、私の幼少期の家は私の避難所であり、両親とずっとそこに住み続けたいと思っていました。もちろん、年を取るにつれて、新しいことをしたい、新しい人に会いたい、新しい経験をしたいという気持ちが強くなりましたが、それを実現するには住む場所を変える必要がありました。人として成長するために変化を受け入れなければならなかったのと同じように、スキルや使用するツールを改善するためには、時に変化を遂げる必要があります。これは、より効率的に作成された先進的な製品を求める要求が高まる中、PCB設計ソフトウェアの生産者がソフトウェアパッケージを継続的にアップグレードする必要があるPCBデザイナーにとって特に当てはまります。 もちろん、私たちは変化に対して生まれつきの抵抗感を持っているようで、パッケージにようやく慣れた後にプログラムの変更が発生すると、確かにイライラすることがあります。このような時、PCB設計ソフトウェアの開発者が機能性や能力の向上だけでなく、使いやすさや変更への適応のしやすさにも同じくらい配慮していると非常に助かります。 Altium Designerでは、業界で最も先進的で直感的なPCB設計ソフトウェアを提供しつつ、シンプルさと使いやすさを損なわない製品開発にユーザー中心のDNAアプローチを採用しています。このアプローチがどのように実装されているかを、メニューの変更と単位の切り替えを見てみましょう。 Altium Designerのメニュー変更 Altium Designerは、以前のバージョンのPCBソフトウェア設計パッケージを改善しています。エンジニアやデザイナーが最大限の利益を実現するために、プログラムの能力と機能の進歩を実装するにあたり、いくつかの新しいメニュー変更があります。すべてのメニュー変更を定義するよりも、新しい Altium Designerユーザーインターフェース(UI)を包括的に見る方がおそらくより有用です。 Altium Designerメインメニュー Altium DesignerスタートアップUI Altium DesignerのスタートアップUIは、上に示されているように、2つのレベルのメニューと周囲に配置された「簡単アクセス」タブのセットで構成されています。このレイアウトスタイルは、プログラム全体に存在するさまざまなアクセスオプションの繰り返しのテーマを強化します。トップレベルのメニューバーには、ほとんどのプログラムで一般的であるため、認識可能であるべきアイコンが含まれています:右上隅 - 保存、ファイルを開く、やり直し、元に戻す;そして左上隅 - 検索、最小化、サイズ変更、閉じる。2番目のレベルは、プログラム固有のメニューで構成されています: 記事を読む
統合環境における制約駆動設計とルール駆動設計 統合環境における制約駆動設計とルール駆動設計 1 min Thought Leadership 競合他社のツールをご利用のユーザー 競合他社のツールをご利用のユーザー 競合他社のツールをご利用のユーザー もし、人生のルールが自動的にチェックされたらどんなに素晴らしいだろうか。私はイタリア料理を作るのが好きだが、料理本とトマトソースの鍋の間を行き来するのは疲れる。キッチンでの唯一の自動ルールチェック機構はオーブンタイマーだ。幸いにも、PCBデザイナーにとっては、制約とルールのチェック機能を含む高品質のソフトウェアパッケージがあり、レイアウトと回路図を自動的にチェックできる。 ルーティング、スペーシング、伝搬遅延、ファンイン/ファンアウト、ビアに関する設計ルールをPCBに設定する能力は、PCB設計ソフトウェアの必須機能となっている。しかし、すべてのPCB設計ソフトウェアが同じように作られているわけではない。異なるプログラムでは設計ルールの定義が異なる方法で表示され、設計ルールは異なるインターフェースで定義され、いくつかの表示は他より直感的である。 PCB設計ソフトウェアは、設計ルールと制約を設定するだけでなく、これらのルールが回路図とレイアウトにどのように表示されるか、特定のアプリケーションに対してルーティング制約と指示をカスタマイズする柔軟性を提供すべきである。統合設計環境で作業するとき、設計ルールはプログラムの一部で定義され、レイアウト全体に適用される。 制約駆動型対ルール駆動型設計 制約ベースの設計とルール駆動型設計は、基本的な原則の下で動作します。定義された設計ルールに対してレイアウトをチェックし、設計者に違反を表示します。しかし、表面を掘り下げると、これらの方法論の間の主な違いは設計環境に関係しています。 制約駆動型設計を使用する一部のPCB設計ソフトウェア会社は、複数のプログラム間で制約定義を受け渡します。これが統合設計環境と呼ばれているにもかかわらず、設計はユーザーインターフェースの下で真に統合されていません。 真に統一された設計環境はこれを克服します。すべての制約定義とチェックが単一の統一インターフェースで行われます。回路図キャプチャプログラムからレイアウトプログラムに制約を送信する代わりに、回路図とレイアウトを一つの屋根の下で真に統合するソフトウェアを使用するのはどうでしょうか? 言われているように、ルールは破るためにあるものです。すべての設計ルールがすべての状況に適用されるわけではなく、設計ソフトウェアの仕事は、ルールを破ったときに通知することです。デザイナーやエンジニアとして、そのルールがデバイスが適切に機能するために本当に重要かどうかを決定するのはあなた次第です。レイアウト内のルール違反を明確で視覚的な方法で示すグラフィックをカスタマイズできるべきです。誰もルール違反のリストをスクロールして、モデル内の違反要素を手動で探したいとは思いません。 一部の設計ルールは他のルールよりも優先される必要があります。これを念頭に置いて、設計ソフトウェアはどの設計ルールをプロセスで優先するかを定義できるようにするべきです。これにより、優先順位の順にルールが順次チェックされます。このタイプのルールチェックは不必要なルールの衝突を防ぎ、統合設計モデルを使用するソフトウェアパッケージ内でのみ機能します。 Altium Designerのルールエディタ 制約と設計ルール:不足した場合はどうなるのか? 多層ボード、 HDIアプリケーション、高速設計、および 高周波設計において、ビアのパラメータと隣接する機能とのクリアランスを定義することは非常に重要です。これらの重要な構造に対する設計ルールを定義する際には、設計プロセスの各ステップでルールが設計にどのように影響するかを正確に表示するグラフィカルインターフェースを含めるべきです。 ビアとルーティングパラメータのグラフィカル表現を含まないソフトウェアは、設計者が抽象的な識別子に基づいてすべての設計ルールの意味を記憶することを強いるため、重要なルールを無視したり、誤って他のルールを適用したりする可能性があります。これはまた、新しい設計者が設計ソフトウェアに慣れるまでの時間を増加させます。 PCB設計ソフトウェアが、トレースクリアランスやビア設計のようなものにのみ設計ルールが適用されるという視点を取る場合、重要な機能に関する設計ルールを定義する機会を失います。信号整合性、高速設計、ルーティング指示、およびその他の仕様に関するルールは同様に重要であり、回路基板に同様の容量で影響を与えます。 あなたのソフトウェアにこれらの設計ルールが含まれていない場合、これらの重要な要件を満たしていることを確認する唯一の方法は、シミュレーションを含めるようにプロセスを調整することです。これらの領域の問題を修正することは時間がかかり、設計とシミュレーションの間を行き来する必要があります。設計とシミュレーションのソフトウェアが統合された設計環境に組み込まれていない場合、状況はさらに悪化します。 設計ルールはルーティングだけに関するものではありません 複雑なデバイスに取り組むとき、設計ルールは不可欠です。おそらく、制約エディタ、設計ルールチェック、 記事を読む
altiumで回路図をPCBレイアウトに変換する方法 Altium Designerで回路図からPCBレイアウトを作成する方法 1 min Blog 読者の皆さんにはいつものように、PCB回路図をまとめるという素晴らしい仕事をしていただきました。回路を定義したところで、PCBレイアウトに進む準備が整いました。しかし、今回は少し勝手が違います。通常のレイアウトリソースが利用できないか、最初のレイアウトを自分で作成したいと思うかもしれません。理由が何であれ、PCB設計の基板に関する作業を開始する準備はできていても、Altium DesignerのPCB回路図から作成する方法はご存じでないでしょう。 幸いなことに、Altium Designerの次のステップは非常に簡単です。ここでは、非常に単純なPCB回路図を見て、それを真新しいPCB設計と同期させるために何をする必要があるかを見ていきます。この単純で小さな設計は、おそらく現在取り組んでいる回路図とはまったく異なりますが、回路図から回路基板へのデータ転送の基本的な手順は同じです。PCB回路図からPCBレイアウトを作成することは難しくありません。Altium Designerは、回路図からPCBへのオールインワンの変換装置として機能します。 Altium Designerで回路図をPCBレイアウトに変換する方法 Altium Designerで回路図をPCBレイアウトに変換するプロセスでは、次の3つの簡単な手順に従います。 ステップ 1: 設計の同期を準備 ステップ 2: 回路図エディターを使用して設計データをPCBにインポート ステップ 3: レイヤースタックを定義 ステップ1では、回路図とPCBレイアウトの同期を妨げるような設計ルール違反がないか回路図をチェックします。PCBレイアウトが作成されると、この最初の同期ステップにより、回路図のその後の変更をPCBレイアウトにすぐにインポートできるようになります。ステップ2では、回路図エディターを使用して基板を空のPCBレイアウトにインポートします。現在のプロジェクトで新しいPCBファイルを作成し、回路図エディターを使ってコンポーネントのフットプリントを新しいPCBにインポートする必要があります。ステップ3では、新しいPCBのレイヤースタックを定義します。この3つの手順を完了したら、コンポーネントの配置とコンポーネント間のトレースの配線を開始できます。 Altium 記事を読む
伝搬遅延を減らす:ロジックゲートと回路基板をタイムリーに保つ ロジックゲートの伝搬遅延を最小限に抑える:パルス列を同期させる 1 min Thought Leadership アナログ時計を使用している場合、夏時間は個人的な生活や職業生活に大きな混乱をもたらすことがあります。起きたときにスケジュールが1時間狂っていることに気づかないこともあります。誰もが夏時間の犠牲になったことを認めたくないものですが、これが起こると、スケジュールを再同期させなければなりません。 時計と電子部品を同期させることは、高速PCB設計において重要です。バストレースルーティング、高性能DDRメモリ、一般的な高速回路などのアプリケーションでは、信号とクロックパルスの正確なタイミングが必要です。xorゲートやNANDゲートなどのロジックゲートの伝搬遅延は、データを破損させ、重要なコンポーネントをシステムクロックと同期させることができなくなります。さらに、セットアップ時間とホールド時間は、クロックと信号のトレースを正確にルーティングすることを要求します。ゲート遅延などで供給電圧が停止すると、任意の集積回路が問題を経験する可能性があります。しかし、デジタル電子機器における伝搬遅延とは何でしょうか? セットアップ時間とホールド時間 ロジックゲートにおける伝搬遅延は、通常、ロジックゲートの立ち上がり時間または立ち下がり時間を指します。これは、入力状態の変化に基づいてロジックゲートが出力状態を変更するまでの時間です。これは、ロジックゲートに固有のキャパシタンスによって発生します。過去には、クロックやデータ伝送速度が遅かったため、伝搬遅延はデジタル回路において主要な問題を引き起こすことは通常ありませんでした。なぜなら、立ち上がり時間や立ち下がり時間が比較的速かったからです。 しかし、現在の状況はそれほど便利ではありません。 高速回路では、クロック周波数がデジタル電子機器の伝搬遅延と同等になることがあります。その結果、システム内を移動するデータがクロックと同期していない可能性があります。例えば、ロジックゲートの伝搬遅延によって、デバイスに深刻な影響を及ぼすことがあります。この不一致のために、コンポーネントが設計通りに動作しないことがあります。ロジックゲートの伝搬遅延、または回路内の他の任意のタイプの伝搬遅延は、データ集約型アプリケーションでデータ破損を引き起こすこともあります。 例として、次のクロックパルスでトグルするように設定された立ち上がりエッジフリップフロップを考えてみましょう。クロックパルスの立ち上がりエッジが到着すると、出力状態はトグルし始めます。しかし、出力状態は即座に切り替わりません。代わりに、出力状態が0から1へ、またはその逆へ上昇するのには時間がかかります。これは、フリップフロップの下流にある出力パルスとクロックパルスが同期していない可能性があることを意味します。 伝搬遅延はオシロスコープで測定できます 伝搬遅延の補償 明らかに、デジタルシステムでクロック信号を速めることはできませんし、PCBの異なる部分でクロックパルスを選択的に速めることもできません。しかし、トレースの長さを調整することで、デバイス内の異なる信号の到着を遅らせることができます。小さな延長を加えることで、パルスをわずかに遅らせ、信号を再び同期させることができます。クロックトレースをわずかに遅らせることで、ICが適切な状態に落ち着く時間を与え、それでも同期を保つことができます。 適切な補償には、PCB内の異なるコンポーネント間の クロックスキューを計算することも必要です。ほとんどの場合、PCBはグローバルクロックによって動作し、それが直接異なるコンポーネントに供給されます。トレースが異なるコンポーネントに分岐する方法によって、クロックスキューが蓄積され、クロックと信号パルスを同期させるためにより大きなセットアップ時間とホールド時間が必要になることがあります。 信号が次のクロックパルス前に完全レベルに達するのに十分な時間を与える方法の一つは、PCBの特定のポイントでクロックトレースを迂回させることです。蛇行迂回はクロックパルスにちょうど良い遅延を与えることができます。差動トレースは一緒に迂回させ、密接な結合を維持する必要があります。 デバイスに必要なトレースを提供する では、どのトレースを迂回させるべきか、どうやって選ぶのでしょうか?補償は各ネットのトレースに適用されるべきです。まず、ネット内で最も長い信号トレースの長さを探し、残りのトレースがすべてのトレースを通じて信号が同期されるように迂回させます。最後に、このネットのコンポーネントに接続するクロックトレースの長さを調整します。ICが完全電圧に達するのに十分な時間だけクロックパルスを遅延させます。 ライン遅延と立ち上がり/立ち下がり時間 デジタル電子回路において、線路遅延と伝搬遅延は時々、同じ意味で使われることがあります。線路遅延は伝搬遅延と重要な関係があり、特定の条件下では信号伝送の問題を引き起こすことがあります。具体的には、出力信号の立ち上がり時間または立ち下がり時間を出力トレース上の線路遅延と比較する必要があります。トレースの長さが長い場合、出力信号は移動するパルスとして動き、インピーダンスの不一致で反射されることがあります。 特定の条件下では、信号トレースを伝送線として扱う必要があります。業界の経験則の一つに、PCBトレースの片道線路遅延が信号の立ち上がり/立ち下がり時間(どちらのエッジが速いか)の半分以上に等しいかそれ以上の場合、ロジックICからの出力信号トレースを終端することがあります。 これは、回路の信号トレースが十分に短い限り、インピーダンスの不一致があっても問題ないことを意味します。トレースが短い場合、信号はその完全な電圧レベルまで上昇し、出力電圧はトレース全体に適用されます。移動するパルスではなく、信号は二点間の一時的な定電圧として存在し、信号の反射はありません。 優れたPCBレイアウトソフトウェアである 記事を読む
PCB基板に厚いFR4か薄いFR4を使用すべきか? PCB基板に厚いFR4か薄いFR4を使用すべきか? 1 min Blog 子供と一緒にパイを作ったことがあるなら、皮の厚さが重要であることを知っているでしょう。薄すぎると、中身が散らかってしまいます。厚すぎると、まるでパンを噛んでいるようです。ちょうど良い厚さがパイを美味しくする秘訣です。 PCBの基板材料は非導体であり電流を運びませんが、FR4 PCB基板の厚さは基板の構造強度を決定するだけでなく、電力と信号の整合性にも影響します。設計者としてのあなたの仕事は、望ましい厚さを持つ基板を持つために、適切なセットの積層材を組み合わせることです。そして、PCBでどんな厚さでも達成できるわけではありません。基板の厚さについてどのような厚さを使用すべきか、どれだけ厚くまたは薄くできるか不確かな場合は、FR4の厚さに関するこれらのガイドラインを読んでください。 FR4厚さの設計上の考慮事項 PCBの標準厚さは1.57mmです。一部のメーカーは、0.78mmや2.36mmといった特定の厚さにも対応します。"厚い"または"薄い"FR4と言う場合、通常は1.57mmの標準厚さと比較しています。製造業者のプロセスが対応できる限り、 コアとプリプレグ積層材の厚さを組み合わせることで、好きな厚さのPCBを選ぶことができます。 積層材を選択し、レイヤースタックアップを設計する前に、ボード厚さに関連する以下の設計の側面について考えてください: フォームファクター PCBに厳格なフォームファクター要件はありますか、または非常に薄い筐体に収める必要がありますか?一部の設計では、重いコンポーネントを支えたり、機械的に厳しい環境に耐えたり、機械的サポートに収まるために(軍事および航空宇宙組み込みシステムの 高速バックプレーンが一例です)、厚いボードが必要です。これらの制約により、ボードの厚さが特定の値に限定されることがあります。 コンポーネントとエッジ接続 このデバイスには、特定のPCB厚さを必要とするコンポーネントがありますか?エッジコネクターや大型のスルーホールコンポーネント(高電流トランスフォーマーなど)のようなコンポーネントは、PCBスタックアップが正しい厚さであることを要求します。いくつかのコンポーネントのデータシートやアプリケーションノートでは、さまざまな理由から特定のコンポーネントに対して最小のPCB厚さを指定している場合があり、これらはPCBスタックアップを設計する際に考慮すべきです。 この点が重要な例のコンポーネントとして、SMAエッジコネクターがあります。下に示されているこのコネクターでは、コネクターボディの上部と下部のスポークが、約60-70ミル厚のPCBに対応するように設計されています。この特定のタイプのコネクターを使用したい場合、この値を超えることはできません。その場合、穴取り付けスタイルのSMAを使用する必要があります。この値より下を行くことは可能ですが、その場合、このスタイルのエッジコネクターに関連する機械的強度の一部を失うことになり、これはその主な利点の一つです。 SMAは最もよく知られているエッジコネクタのスタイルの一つですが、表面実装デバイスとしてエッジに取り付ける他のスタイルや、プレスフィット取り付けを可能にするルーティングされた切り欠きを使用するスタイルもあります。おそらく世界で最も一般的なコネクタの一つであるUSBコネクタは、特定のPCBの厚さに依存する後者のタイプのコネクタの主要な例です。 下の画像は、取り付け用に示されたルーティングされた穴とともにUSBコネクタのPCBフットプリントを示しています。これらの穴は標準化されており、PCBのエッジに取り付けられたUSBコネクタの機械図面に示されます。これらの穴を通るタブは、PCBのエッジに沿ってコンポーネントを保持するのに役立ちます。 PCBで使用できる最終的なエッジマウント接続のタイプは、PCBのエッジに沿った金の指であります。これらのボードは、ボードエッジに沿った金の指と接触するスロットコネクタに取り付けられ、これらのコネクタは特定の範囲内で全体のボード厚さが必要です。ほとんどの設計者は、RAMモジュール、PCIeカード、ドーターカード、固体ドライブ、キースロットコネクタに沿った金の指に慣れているでしょう。 トレースインピーダンス トレースとその最も近い基準平面(隣接する層上)との距離は、トレースのインピーダンスだけでなく、多層ボードの誘電体損失のレベルを決定します。薄い層厚を選択する場合、トレースも細くする必要があります。特定のコネクターやICパッケージに対応する特定のトレース幅を設計したい場合は、望ましい幅をサポートするために必要な層厚を考慮するべきです。 必要な層厚がボードの厚さを変えない場合もありますが、これは利用可能なコアとプリプレグのラミネート厚さに依存します。設計で特定の厚さを設定し、その厚さが製造可能であると期待するよりも、製造業者にどのようなラミネートが利用可能かを確認し、それらのラミネート厚さを基に設計することが最善です。 この注意点は、積層材料メーカーから製品リストにアクセスできる場合に限ります。一部の積層材料製造業者は、厚さの値を含む利用可能なコアとプリプレグの長いリストを提供することがあります。製造業者とクリアする限り、これらのリストから選んで自分のスタックアップを提案することができます。ただし、製造業者が材料を在庫しており、このアプローチをサポートするために必要な加工能力を持っていることを確認してください。積層材料ベンダーから見つかるかもしれない例示リストは以下の通りです。このリストは 記事を読む