Manufacturing Outputs and Compliance

Generate accurate manufacturing outputs while ensuring compliance with industry regulations, reducing production errors and time-to-market.

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
電子部品データの信頼性はどの程度ですか 電子部品データの信頼性はどの程度ですか? 1 min Blog 電気技術者 購買・調達マネージャー 電気技術者 電気技術者 購買・調達マネージャー 購買・調達マネージャー 正確な部品データは、成功したプロジェクトの生命線です。しかし、多くのエンジニアや調達専門家は、部品表(BOM)の信頼できないまたは古い情報に苦労しています。この低品質なデータは、設計の完整性から生産効率、コスト、最終製品の品質に至るまで、製品のライフサイクル全体を通じて様々な問題を引き起こす可能性があります。 電子機器の設計と調達チームにおいて、低品質なデータがどのように混乱を引き起こすか見てみましょう。その後、BOM内で一貫して正確で信頼性が高く、高品質な部品データを確保するための最新の戦略と技術について検討します。 低品質な部品データが不安定を生む 部品番号や仕様が正確でない場合、在庫切れや製造中止のコンポーネントを注文するリスクがあります。これは生産遅延や 直前の設計変更を引き起こし、慎重に計画されたスケジュールを狂わせる可能性があります。例えば、再設計されたスマートフォンが特定のマイクロプロセッサを要求している場合、設計のBOMに古いコンポーネント情報が含まれていると、元のマイクロプロセッサが入手不可能になった場合に製造者が迅速に対応できません。この問題は、電話の性能を損なうか、そのリリースを遅らせる可能性があります。 今日の競争の激しい環境では、このような遅延は企業の収益とブランドの評判にとって高くつくことがあります。自動車電子機器サプライヤーが新しい先進運転支援システム(ADAS)を開発しているシナリオを考えてみましょう。重要なセンサーのリードタイムが不正確なBOMデータのために過小評価された場合、新しい車両の全生産ラインが停止し、数百万ドルの損失を招く可能性があります。 設計と品質の問題の波及効果 BOM内の不正確なコンポーネント仕様は、回路の性能が最適でなかったり、完全な設計失敗を招いたりする可能性があります。これは、性能と安全性が生死に関わる可能性がある航空宇宙や医療アプリケーションなどで特に問題となります。 1つの誤ったコンポーネントがシステム全体の完全性を損なう可能性があります。場合によっては、企業は生産ライン全体を廃棄し、大きな財務損失を吸収する必要があるかもしれません。さらに、不正確または古い環境や規制のコンプライアンスデータは、製品のリコールや法的問題を引き起こす可能性があります。 予測不可能な予算とスケジュールの衝突 古いまたは誤った価格やリードタイムのデータは、新製品の予算やタイムラインを歪めることがあります。利益率が厳しい業界では、小さな不一致が利益と損失の違いを生むことがあります。設計プロセスの遅い段階でコンポーネントの不正確さが発見されると、しばしば再設計が必要になります。これらの直前の変更はプロジェクトの予算とスケジュールを圧迫し、市場投入までの時間を遅らせ、重要な市場の機会を逃す可能性があります。 工場の床でのトラブル 不正確なデータを含むBOMは、誤ったフットプリントやピン配置情報を生み出すことがあります。これは生産フロアで大きなトラブルを引き起こす可能性があり、製造上の欠陥や組み立てラインの停止を引き起こし、生産を遅らせ、不良品を顧客に送り出すリスクを高めることがあります。例えば、ある電子契約メーカーがマイクロコントローラーの誤ったフットプリントデータを使用し、数千の回路基板が誤って組み立てられました。このエラーは最終テストでのみ発見され、基板の廃棄、部品の無駄遣い、および大幅な生産遅延を引き起こしました。 誤ったデータに基づいて間違ったコンポーネントを注文することも、在庫の不一致や潜在的な部品不足を引き起こします。これは遅延のドミノ効果、急いでの注文履行、および増加したコストを生み出す可能性があります。 Altium 365 BOM Portalでデータの信頼性を確保する 信頼できない電子部品データの課題に対処するため、Altiumは Altium 記事を読む
調達専門家のためのBOM管理におけるコスト削減テクニック 調達専門家のためのBOM管理におけるコスト削減テクニック 1 min Blog 購買・調達マネージャー 購買・調達マネージャー 購買・調達マネージャー 電子部品業界において、企業とその内部チームが利益を上げ、今日の非常に競争の激しい市場で競争力を維持したい場合、部品表(BOM)を効果的に管理する方法を見つけ出す必要があります。この感覚は、特に調達専門家にとって真実であり、BOM管理はコストの最適化と 部品の効率的な調達を確実にする努力に大きな影響を与えます。 BOMの構造とデータの理解 BOMは、製品を製造するために必要なすべての部品、アセンブリ、および材料の包括的なリストであり、調達、生産計画、および在庫管理にとって重要な文書です。企業がBOM管理を通じてコストを効果的に管理するためには、BOMの主要な要素とデータの正確性および一貫性の重要性を理解する必要があります。 BOMの主要な要素 典型的なBOMには、次の要素が含まれます: アイテム: 製品を構成する個々の部品またはアセンブリ。 数量: 製品の単位ごとに必要な各アイテムの数。 属性: 各アイテムに関する追加情報、例えば部品番号、説明、供給業者、およびコスト。 データの正確性と一貫性の重要性 正確で一貫したデータは、効果的なコスト分析と最適化にとって基本です。BOMのエラーや不一致は以下のような問題を引き起こす可能性があります: 過剰在庫または在庫不足: 不正確な数量は、余剰在庫や不足を引き起こし、コストの増加や潜在的な遅延につながります。 誤った価格設定: 不正確なコストデータは、部品の過払いや製品の総コストの過小評価につながる可能性があります。 サプライチェーンの混乱: BOMのエラーは、調達と生産の遅延を引き起こし、納期と顧客満足度に影響を与える可能性があります。 記事を読む
先取りして部品の陳腐化に対処するための積極的なソリューション 先取りして部品の陳腐化に対処するための積極的なソリューション 1 min Blog 電気技術者 購買・調達マネージャー 電気技術者 電気技術者 購買・調達マネージャー 購買・調達マネージャー 新しいボードの設計において、設計者や製造業者は定期的に部品の陳腐化という問題に直面します。これは技術の進化や市場の需要の変化によって引き起こされる大きな課題であり、残念ながら製品開発、生産、保守において潜在的な中断を引き起こす可能性があります。陳腐化に関連するリスクを軽減するためには、企業は積極的な対策を講じておく必要があります。 企業が直面する陳腐化にはさまざまなタイプがあり、それぞれがいくつかの要因によって引き起こされます。企業が陳腐化リスクを管理するための効果的な戦略を開発するためには、これらの各要因を理解することが重要です。以下の表をご覧ください。 要因 説明 技術の進歩 技術の急速な進歩は、古い部品を陳腐化させることがよくあります。例えば、新しい、より効率的なマイクロプロセッサの導入は、古いモデルを望ましくなくさせることがあります。 市場需要の変化 消費者の好みや業界のトレンドの変化は、特定の部品への需要の減少につながることがあります。例えば、従来のハードドライブからの移行は、ハードドライブ部品の市場に影響を与えました。 サプライチェーンの混乱 自然災害、地政学的な出来事、製造上の課題など、サプライチェーンの混乱は、部品の不足や陳腐化に寄与することがあります。 陳腐化のタイプ 定義 例 商業的 製造または購入が経済的に実行不可能になるコンポーネント、例えば製造コストの高さや需要の低さなどの要因による。 限定された市場需要のある特殊なコンポーネント;製造コストが高い時代遅れのコンポーネント。 製品寿命終了(EOL) コンポーネントがもはや製造されたり、サプライヤーによってサポートされなくなった時。 古いマイクロプロセッサー;CRTテレビ。 機能的 記事を読む
SAPによるウルトラHDI PCB製造 超高精細HDI PCB製造における半加工プロセス(SAP)の探求 1 min Blog PCB設計者 電気技術者 購買・調達マネージャー +1 PCB設計者 PCB設計者 電気技術者 電気技術者 購買・調達マネージャー 購買・調達マネージャー 製造技術者 製造技術者 PCB技術が進化し続ける中で、超高密度インターコネクト(UHDI) PCB製造のような新しい製造技術が信じられないほどの可能性を解き放っています。最も変革的な進歩の中には、従来の減算エッチングでは達成できなかったより細かいトレースとスペースを実現する、半加算プロセス(SAP)と修正半加算プロセス(mSAP)があります。これらの革新は、PCB設計の限界を押し広げ、前例のない精度で複雑な回路を製造することを可能にしています。 PCB製造の文脈では、半加算プロセス(SAP)は、従来の減算方法からの脱却を提供し、減算エッチングで可能だった2ミルの閾値をはるかに下回る、これまで達成できなかったトレースとスペースを可能にします。SAPプロセスは、銅のような導電性材料を追加して回路を形成することを可能にし、それをエッチングで取り除くのではなく。この技術は、先進的な材料と組み合わせることで、高性能で小型化されたデバイスを含む次世代の電子機器をサポートする超微細な特徴サイズの扉を開きます。 PCB製造における半加算プロセスの主な利点 極端なミニチュア化 SAPおよびmSAP技術で最もエキサイティングな機会の一つは、PCBフットプリントを大幅に削減できる能力です。トレースとスペースの寸法がサブミクロンレベルに縮小することで、設計者は全体的な電子システムのサイズを劇的に小さくするか、または解放されたスペースを利用して、より大きなバッテリーや強化された機能性などの追加コンポーネントを統合することができます。これは、スマートフォン、ウェアラブル、IoTデバイスなど、スペースがプレミアムなデバイスにとって特に重要です。 簡素化されたレイヤリングと向上したルーティング効率 これらのプロセスのもう一つの重要な利点は、PCB設計で必要なレイヤー数を削減できる可能性です。タイトピッチのボールグリッドアレイ(BGAs)を持つコンポーネントや標準的な設計であっても、より少ないレイヤーで複雑な信号をルーティングできる能力は、コストと複雑さの両方を削減できます。レイヤーが少ないということは、マイクロビアとラミネーションサイクルも少なくなり、製造時間が短縮され、全体的な収率が向上します。機能性を維持または向上させながらレイヤー構造を簡素化できる能力は、信頼性と性能の両方の観点から大きな勝利です。 改善された信号整合性と精度 ミニチュア化とレイヤー削減は具体的な利点ですが、SAPプロセスは電気性能を大幅に向上させることもできます。最も重要な改善点の一つは、信号の整合性です。半加算プロセスは、より広範な減算エッチングプロセスではなく、正確なイメージング技術に依存しているため、トレースの幅と間隔をより細かく制御できます。これにより、インピーダンスの制御がより厳密になり、信号の劣化が減少し、これらの技術を高速デジタルおよびRFアプリケーションに理想的にします。 半加算エッチング対減算エッチング:簡単な概要 従来の減算エッチングプロセスは、銅被覆されたラミネートから始まり、不要な銅をエッチングして回路パターンを形成します。このプロセスは効果的ですが、銅の厚さと使用されるエッチング方法のため、細かいトレースとスペースを達成することには限界があります。 対照的に、半加算プロセスは、非常に薄い銅層または純粋な加算方法の場合は銅が全くない状態から始まります。銅は選択的に追加され、望ましいパターンを作成し、薄いシード層のみが除去される必要があります。この精度により、製造業者のイメージング能力にもよりますが、トレースは25マイクロン(またはそれ以下)という非常に細かい特徴を実現できます。 改良半加算プロセス(mSAP) 変更された半加算プロセス(mSAP)は、SAPの拡張であり、スマートフォンのような消費者向け電子機器の大量生産によく使用されます。主な違いは、開始する銅層にあります。mSAPはやや厚い箔から始まり、その結果、やや精密でないトレースプロファイルになります。mSAPは優れた特徴サイズを可能にしますが、トレース/スペースの範囲は通常30ミクロンで、開始する銅が厚いためトレースはより台形の形状をしています。 これらの違いにもかかわらず、mSAPは従来の減算法よりもはるかに細かい特徴を実現し、標準的なPCBと高度な基板レベルの製造技術の間の橋渡しと見なされています。このアプローチは、コストに敏感な大量アプリケーションで重要です。 基板のようなPCB(SLP)と超HDIの未来 この分野で頻繁に使用される用語は「基板のようなPCB」(SLP)で、これは加算または半加算プロセスで構築された回路基板を指します。SLPは、半導体基板の精度に近づく細かい特徴を可能にしますが、はるかに大きなPCBパネル上です。これは、伝統的なPCB製造のコストとスケーラビリティの利点を犠牲にすることなく、ミニチュア化が求められるアプリケーションにとって特に有利です。 典型的なSAPおよびmSAPプロセスフロー SAPとmSAPの両方について、プロセスフローは類似した手順に従います: 記事を読む
設計データと要件による迅速な設計とエラーの削減 デザインデータと要件をどのように接続して、より速い設計とエラーの少ない設計を実現するのか? 1 min Blog 電気技術者 システムエンジニア/アーキテクト 電気技術者 電気技術者 システムエンジニア/アーキテクト システムエンジニア/アーキテクト 電子設計の複雑さとそれが提示する課題は、これまで以上に顕著になっています。デバイスがより相互接続されるようになるにつれて、 効率的でエラーのない設計プロセスの必要性が最優先事項となります。現代の電子設計の課題は、設計データを要件と連携させることの重要性を強調しています。 Altium 365 Requirements & Systems PortalのようなAIインテリジェンスによって動かされるツールを使用することで、複雑さを より速く、より少ないエラーで管理することができます。その方法を発見しましょう! 現代の設計プロセスの課題 私たちの日常生活におけるスマートデバイスの普及は、 電子設計の複雑さを劇的に増加させました。過去40年間で、チップの使用量は 100倍に急増しました。これを視点を変えてみると、数十年前の電気自動車が10から20個のチップを含んでいたのに対し、今日の車両は 2,000個以上のチップを搭載しています。 同時に、これらの製品に組み込まれるソフトウェアは過去10年間で15倍に増加し、1000万行のコードから驚異の 1億5000万行に膨れ上がりました。電子機器の使用増加は、コストに大きな影響を与えています。例えば、1970年代には、電子機器が車両コストの約10%を占めていましたが、今日ではその数値は40%に達し、2030年までには 電子機器が車両総コストの半分を占めると予測されています。 課題はそれだけではありません。これらの複雑な製品の生産タイムラインは3分の1に短縮されました。 かつて5年かかったものが、今ではわずか2年で完成させる必要があります。この緊急性が、多くの企業にアジャイル手法の採用を促しています。ソフトウェア開発から原理を借りて、設計をプロジェクトフェーズに分割することで、企業は継続的な協力と改善を促進できます。このアプローチは、より速いイテレーションを重視し、チームがシミュレーションの共同設計や共同エンジニアリングを通じて設計コンセプトを洗練させることを可能にします。このような戦略は、広範なシミュレーションと迅速なプロトタイピングを要求し、結果をテストして素早く調整を行う必要があります。 歴史的に、電子機器は 記事を読む
Altium 365 要件 & システムポータルの紹介 Altium 365 要件&システムポータル(RSP)の紹介 1 min Blog 電気技術者 システムエンジニア/アーキテクト 電気技術者 電気技術者 システムエンジニア/アーキテクト システムエンジニア/アーキテクト Altium 365内でValispace駆動の要件&システムポータル(RSP)の立ち上げを発表できることに興奮しています。この新機能により、エンジニアリングチームはAltium 365エコシステム内で直接 要件を管理できるようになり、コンセプトから製造までの電子設計プロセス全体を合理化します。 Altium 365 要件&システムポータルは、AltiumがValispaceを買収した後に開発され、AI駆動の 要件管理ツールとシステムエンジニアリングを統合し、協力を強化し正確性を保証するデータ駆動型アプローチを提供します。ソフトウェアエンジニアリングの 要件管理をシステム設計と統合することで、RSPはチームが異なる分野を横断してシームレスに作業できるようにし、電気エンジニアから外部ステークホルダーまで、誰もが最新の情報にアクセスできるようにします。 要件&システムポータルの主な特徴 電気エンジニア:RSPはシステム要件に完全な可視性を提供し、最新のデータで作業していることを保証し、再作業のリスクを減らし、全体的な効率を向上させます。 エンジニアリングマネージャー:RSPは、すべてのプロジェクト要件の包括的な概要を提供し、複雑さを管理し、チーム全体の整合性を維持することを容易にします。これは、効果的な エンジニアリング要件管理の重要な側面です。 システムアーキテクト:RSPを使用すると、 要件管理を単一のプラットフォームに統合し、複数のツールの必要性を排除し、すべての設計にわたる一貫性を確保できます。 検証チーム:自動検証機能により、設計要素が確立された要件を満たしているかどうかを迅速に判断でき、重要なトレーサビリティを提供し、仕様への準拠を保証します。 RSPが重要な理由 RSPの発売により、 Altium 365の機能が、包括的な 記事を読む