Altium Designer - 回路・基板設計ソフトウェア

簡単、効果的、最新: Altium Designerは、世界中の設計者に支持されている回路・基板設計ソフトウェアです。 Altium DesignerがどのようにPCB設計業界に革命をもたらし、設計者がアイデアから実際の製品を作り上げているか、リソースで詳細をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
 Altium Designerがサポートするガーバーとその後継フォーマット Altium Designerがサポートするガーバーとその後継フォーマット 1 min Blog 設計を終えたPCBを製作する場合には、ガーバーデータを出力してプリント基板メーカに渡します。そして、基板メーカーではこのガーバーデータからアートワークフィルムを作成して基板上に配線パターンを形成します。このガーバーのフォーマットは標準化されたもの(または、標準的に利用されているもの)が複数存在します。Altium Designerはこれらを広範囲にサポートしています。 これらのフォーマットの中で業界標準として使用されているのがガーバー RS-274Xです。これは、拡張ガーバーと呼ばれ、基板メーカとのデータの受け渡しは、ほとんどどこのフォーマットで行われています。 ガーバー RS-274Xは全ての基板メーカが例外なくサポートしており、標準中の標準であるといえます。しかし、プリント基板の多層化が進む中で、よりインテリジェントなフォーマットへの移行が進みつつあります。 そこで、今回はAltium Designerがサポートする新旧のフォーマットを、時系列的に見ていきたいと思います。 ガーバーRS-274DとRS-274X 業界標準として普及しているガーバーフォーマットにはRS-274DとRS-274Xがあり、それぞれ標準ガーバー、拡張ガーバーと呼ばれています。 ガーバーフォーマットは、もともとはフィルム作画機(フォトプロッタ)メーカーGerber-Systems社(現Ucamco社)の社内規格でしたが、デファクト・スタンダードとして定着したため、1979年にEIA(米国電子工業会)でRS-274D として規格化されました。 このガーバーRS-274Dは、アートワークを「点」と「線」の組み合わせだけで表現するベクトルデータです。これには、作画するすべての「点」と「線」の座標が示されています。そして、この「点」をFlash、「線」をDrawと呼んでいます。しかし、この「点」と「線」には形状とサイズが示されておらず、Dコードと呼ばれる作画に使用するツールの番号が示されています。このため、実際に作画する際には、このDコードに対してツールの形状とサイズを与えなくてはなりません。 初期の作画機(フォトプロッタ)では、シャッター付きの穴に光を通して光束を制御していました。このため、作画ツールをアパーチャ(穴)と呼び、そのサイズを示すリストをアパーチャ・テーブルと呼んでいます。RS-274Dで作画する際にはガーバーデータだけでなく、必ずこのアパーチャ・テーブルが必要になります。 また、RS-274D には面(ポリゴンやリジョン)を表現するパラメータがありませんので、ベタで塗りつぶす部分には、多数の「線」を並べなくてはなりません。このため、基板の配線パターンが単純であってもベタ領域が多いとデータ量が激増します。 このようなRS-274Dの改良版としてガーバーRS-274Xフォーマットが策定されました。これには、アパーチャの定義が含まれており、別個にアパーチャ・テーブルを用意する必要はありません。また、ラスタープロッターへの対応として「点」と「線」だけではなく「面」の表現が可能になっています。これらの利点によってRS-274X への移行が急速に進み、今ではRS-274Dが使われる事は無くなりました。 しかし、何十年も電子機器を作り続けている企業では、新旧のガーバーファイルが残されており、再利用の際にはそれらがRS-274D(標準ガーバー)なのかRS-274X(拡張 ガーバー)なのかを知らなくてはなりません。これは、ファイルをテキストエディタで開いてみるとすぐに見分けられます。RS-274Xでは座標値の記述の前にDコード(ツールの形状とサイズ)が定義されており、この記述が無ければRS-274Dである事がわかります。 記事を読む
ルーティング中にPCBインピーダンス制御を確保する方法 PCBルーティング:式とリソースを使用してPCBインピーダンス制御を確保する方法 1 min Blog 電気技術者 PCB設計者 電気技術者 電気技術者 PCB設計者 PCB設計者 高速信号と高周波信号に共通する一つの要素があります。それは、低損失、低分散の相互接続でインピーダンス制御されたルーティングが必要であるということです。PCBのインピーダンス制御は、適切なルーティングツールと設計ツール内に統合された インピーダンス計算機がなければ達成が難しいです。ほとんどのインピーダンス計算機は、PCB基板上の実際のトレースを正確に表現しない基本方程式を使用し、信号伝播を正しく記述しません。 基準以下のPCB設計機能にボードの機能性を危険にさらす代わりに、入手できる最高の高速設計ユーティリティセットが必要です。最高のPCB設計ソフトウェアには、実際のPCB基板の材料特性を考慮した正確なPCBインピーダンス計算機が含まれています。これらのツールは、高品質の回路基板をルーティングするのに役立つように、回路図やPCBレイアウト機能とも統合されるべきです。統合ソフトウェアパッケージを使用することで、PCBのインピーダンス制御を確保し、生産性を維持できます。 ALTIUM DESIGNER プロフェッショナルな設計者向けに制御されたインピーダンスルーティング機能を備えた統合PCB設計アプリケーション。 高速回路基板やRF回路基板では、基板内の信号が目的地に到達するために非常に正確なルーティングが必要です。高速/RF設計者は、回路基板において正しいインピーダンスの設計が重要であることを知っておくべきです。高速信号を運ぶすべての接続部は、強い反射がなく負荷部品に電力が伝達されるように、正しいトレースインピーダンスを持たなければなりません。 次のPCB設計を行う前に、制御インピーダンスが必要かどうか、そしてそれをどのように計算するかを確認してください。PCBインピーダンスは手計算できますが、最適なPCBルーティングツールセットを使用してレイアウトを作成するときに計算が最も簡単です。制御インピーダンスの風景においてPCBルーティング機能がどのように適合するかを本当に理解するには、インピーダンスがどのように計算されるか、そしてほとんどのPCBインピーダンス制御計算機ができないことを理解することが役立ちます。 PCBトレースインピーダンス計算 誘電率定数とトレースの形状が分かっている限り、回路基板内のトレースインピーダンスを計算する方法はいくつかあります: マイクロストリップまたはストリップラインのインピーダンスに対してIPC-2141方程式を使用する Waddelの伝送線方程式を使用する 分散と銅の粗さを考慮できるフィールドソルバーを使用する ほとんどのトレースインピーダンス計算機は、IPC-2141メソッドに基づいていますが、これは今日のモダンな高速・高周波PCB設計には不正確であるとされています。Waddelの方程式は、インピーダンスを計算するための最も正確な分析ツールとして広く認識されていますが、PCBインピーダンス制御には使用が難しいです。これは、インピーダンス目標に到達するために必要な最適なPCBトレース幅を決定するために、これらの方程式を解くための数値アルゴリズムが必要だからです。 これらの方法の代わりに、PCB設計ツールには、インピーダンス目標に到達するために必要なトレース幅を自動的に計算できる機能が含まれているべきです。 インピーダンス計算に分散と損失を含める 実際のPCBラミネートには、インピーダンス計算に含める必要があるいくつかの損失、銅の粗さ、および分散があります。損失と分散を考慮することは、インピーダンス計算のための統合フィールドソルバーを備えたPCB設計ツールにアクセスできる場合、簡単です。Altium Designerの設計ツールを使用すると、複雑なモデルや方程式を使用せずに必要なインピーダンスを簡単に計算でき、インピーダンスプロファイルに準拠するためにボードのルーティングを開始できます。 正確なインピーダンス制御を確保するために、すべての損失源はPCBインピーダンス計算に含めるべきです。 回路基板レイアウトにおける損失と分散についてもっと学びましょう。 記事を読む
回路基板の熱解析の完全ガイド PCB熱解析の完全ガイド 1 min Blog PCB設計者 電気技術者 シミュレーションエンジニア PCB設計者 PCB設計者 電気技術者 電気技術者 シミュレーションエンジニア シミュレーションエンジニア 回路基板が動作中にどのように熱くなるかは、主にPCB基板と銅伝導体の物理的特性で決まります。回路基板の熱解析方法は、動作中に基板がいつどこで熱くなるか、また基板がどれだけ熱くなるかを予測することを目的としています。この重要な解析の部分は、コンポーネントレベルと基板レベルの信頼性を確保することを目的としており、設計に関する多くの決定に影響することがあります。 最適なプリント基板設計ソフトウェアを使用すれば、信頼性が高く、動作時に温度が低い基板を簡単に設計できます。Altium Designerには、信頼性を確保する材料ライブラリを備えた最高の回路基板設計ツールがあり、PCBレイアウトとスタックアップで熱管理のベストプラクティスを実施するために必要なものがすべて揃っています。ここでは、回路基板の熱解析について理解を深め、次に基盤を設計する際に高い信頼性を備えた基板にする方法を説明します。 Altium Designer 高度なレイアウト機能、包括的な基板材料ライブラリ、生産計画機能を統合する統合PCB設計パッケージ。 回路基板とコンポーネントの材質によって、動作中に基板内で熱がどのように移動するかが決まります。残念ながら、PCB基板の材料は絶縁体であり、高温のコンポーネントからの熱の放散を妨げます。銅伝導体とプレーン層は役に立ちますが、動作中の基板の平衡温度に影響を与える設計上のシンプルな選択肢がいくつかあります。これらの設計面での決定は、次の3つの領域に焦点を当てています。 回路基板のスタックアップ設計 基板材料の選択 コンポーネントの選択とレイアウト 電動ファンやヒートシンクなどのほか、いくつかのシンプルな設計の選択肢によって、基板を低温で動作させ、早期故障を防ぐことができます。適切な設計ツールのセットを使用すると、熱管理のベストプラクティスを簡単に実装できます。 熱解析を使用して回路基板を設計する 回路基板設計の熱解析の目標は、温度を制限内に保つためにファン、ヒートシンク、追加の銅箔、またはサーマルビアなどの冷却手段が必要となるタイミングを判断することです。設計者は、基板内のコンポーネントの最大許容温度を選択し、コンポーネントが消費する電力に基づいてコンポーネントの温度がどのように変化するかを調べる必要があります。コンポーネントの温度が許容温度制限を超える場合は、ヒートシンクやファンなどの追加の冷却手段が必要になる場合があります。 まず、集積回路のコンポーネントのデータシートに通常記載されているコンポーネントの熱インピーダンスを確認します。この値は、低電力アンプやICでは最高20℃/Wと低く、強力なマイクロプロセッサーでは最高200℃/Wと高くなることがあります。動作温度を求めるには、コンポーネントの消費電力に熱インピーダンスを掛けます。SOTパッケージ内のMOSFETの例では、これは次のように定義されます。 熱インピーダンスで定義されるコンポーネントの温度。 コンポーネントの温度が高すぎる場合、PCBレイアウト内のコンポーネントの熱インピーダンスを下げるため、コンポーネントから熱を放散するために実行できる手順がいくつかあります。 接地されたポリゴンを使用してサーマルビアをコンポーネントの下に追加する 熱伝導率の高いPCB基板材料を使用する コンポーネントに放熱板を追加する プレーン層など、コンポーネントの下にさらに多くの銅箔を含める 記事を読む
PCB設計に最適なキャパシタ回路シミュレータ PCB設計に最適なキャパシタ回路シミュレータ 1 min Blog 電気技術者 電気技術者 電気技術者 コンデンサは、集積回路やPCB設計において基本的な要素であり、少なくとも1つのコンデンサを含まない回路を思い浮かべるのは難しいです。コンデンサの振る舞いと回路内の他のコンポーネントとの相互作用は、設計が意図した通りに動作することを確認するために一般的にシミュレーションする必要があります。 コンデンサは、回路内での使用に応じてフィルタリング、ブロッキング、電力安定性の振る舞いを提供でき、コンデンサ回路シミュレータは設計の安全性と有効性を検証するのに役立ちます。 最高の回路設計ソフトウェアには、コンデンサRC回路やその他の一般的な回路に対して過渡解析を実行できるSPICEパッケージが含まれています。Altium Designerは、これらの回路シミュレーションツールをはじめ、多くの機能を単一のアプリケーションで提供し、コンデンサ回路のシミュレーションを作成して実行することを容易にします。 回路設計を検証したら、業界最高のECADツールで高品質のPCBレイアウトを作成するために必要なすべてが揃っています。 ALTIUM DESIGNER 強力なSPICEシミュレーションエンジンとプロフェッショナルな設計者向けの完全なCADツールセットを備えた統合PCB設計アプリケーション。 PCB設計において、広範な振る舞いを説明するために使用できる3つの基本的な線形回路要素があります。それらは、抵抗器、コンデンサ、およびインダクタです。これらの回路要素は、電子デバイスで様々な有用な機能を生み出すために創造的な方法で組み合わせることができますが、設計が設計者の意図する通りに動作することを保証するためには、シミュレーションツールが必要です。特にRC回路のようなコンデンサ回路は、電子設計において広範な振る舞いを説明するために基本的であり、広く使用されています。 コンデンサ回路設計を作成したら、設計が意図した通りに機能することを確認するために、コンデンサ回路シミュレータが必要になります。これらのシミュレーションプログラムはSPICEエンジンに基づいており、設計者が物理的なPCBレイアウトを作成する前に回路シミュレーションを実行することを可能にします。 適切な電子設計ソフトウェアを使用すれば、コンデンサ回路シミュレーションで迅速に計算できるいくつかの重要な指標があります。 コンデンサ回路シミュレーション方法 SPICEに基づく回路シミュレーションプログラムは、反復アルゴリズムを使用して微分方程式を解くことによって動作します。これらは周波数領域または時間領域で実行されることができ、最高の回路設計ツールは追加の分析を実行して回路を理解するのに役立ちます。コンデンサシミュレーションでは、計算されるべきいくつかの特定の点があります: 過渡解析によるRC時定数の決定 フィルタリング動作を理解するための伝達関数解析 高速/高周波回路での整合を保証するためのインピーダンス計算 Altium DesignerのようなPCB設計アプリケーションは、設計者がコンデンサシミュレーションを含むあらゆる種類の回路シミュレーションを実行できるように、回路設計ツールの完全なセットをスキーマティックエディターに含んでいます。電圧源や電流源を使ってコンデンサ回路を中心に大きなシステムを構築するのは簡単で、Altium Designerの直感的なインターフェースを使用して、電流やインピーダンスなどの重要な電気的値を計算できます。 コンデンサ回路シミュレーションの目的 記事を読む