筆者について

Zachariah Peterson

Zachariah Petersonは、学界と産業界に広範な技術的経歴を持っています。PCB業界で働く前は、ポートランド州立大学で教鞭をとっていました。化学吸着ガスセンサーの研究で物理学修士号、ランダムレーザー理論と安定性に関する研究で応用物理学博士号を取得しました。科学研究の経歴は、ナノ粒子レーザー、電子および光電子半導体デバイス、環境システム、財務分析など多岐に渡っています。彼の研究成果は、いくつかの論文審査のある専門誌や会議議事録に掲載されています。また、さまざまな企業を対象に、PCB設計に関する技術系ブログ記事を何百も書いています。Zachariahは、PCB業界の他の企業と協力し、設計、および研究サービスを提供しています。IEEE Photonics Society、およびアメリカ物理学会の会員でもあります。

最新の記事

高Dk PCB材料の利点 高Dk PCB材料の利点 1 min Blog 「高速設計」と「低Dk PCBラミネート」の用語は、しばしば同じ記事で、そしてしばしば同じ文で使用されます。低Dk PCB材料は、高速および高周波PCBにおいてその場を持っていますが、高Dk PCB材料は電力の整合性を提供します。低Dk PCBは、一般に損失正接が低い傾向にあるため選ばれます。したがって、高Dk PCB材料は、高速および高周波PCBに対して見過ごされがちです。 高速/高周波ボードの電力の整合性を見るとき、単に信号損失を受け入れるか、高速ラミネートによって提供される値を受け入れるのではなく、安定した電力のための全体的な戦略の一部として誘電率定数を考慮すべきです。これには、PCBの電力の整合性に影響を与える誘電率定数の実部と虚部の両方が含まれます。これを念頭に置いて、電力の整合性を確保するために高Dk PCB材料が果たす役割を見てみましょう。 高Dk PCB材料とPCB電力の整合性 まず最初に、電力の整合性を見るとき、常にレギュレータ段階から出力される電圧が、PDN全体で電力が流れるにつれて一定であることを確保しようとしています。これには、PDN分析と電力の整合性の2つの側面が挙げられます: DC解析:ここでは、PDNを構成する 導体間のIR降下のみに関心があります。誘電率定数はDC解析では役割を果たしません。 AC解析:AC解析とは、電力平面上の任意の時間変動電流の振る舞いを意味します。これは、PDNのインピーダンスが重要となる場面であり、下流コンポーネントで見られる電圧変動は、 PDNインピーダンスと時間変動電圧(オームの法則)の積です。 電力面とグラウンド面の間の誘電体として使用される高Dk PCB材料は、重要な電力整合性の利点を提供します。特に、グラウンド面と電力面の間のPCB材料の高Dk値は、より大きな 面間キャパシタンスを提供し、これはあなたの平面がより大きなデカップリングキャパシタのように機能し、PDNインピーダンスが低くなることを意味します。グラウンド面と電力面を近づけることも面間キャパシタンスを増加させます。 2006年のIEEE論文からのいくつかの例示的なシミュレーション結果が以下に示されています。 誘電率定数のもう一つの重要な側面は、虚数部分またはDf値です。これは通常、損失正接を使用して要約されますが、これは高速/高周波ボードで特定の積層材の有用性を調べる際に使用する唯一の指標ではありません。 記事を読む
PCB設計における半田ブリッジジャンパーのベストプラクティス PCB設計における半田ブリッジジャンパーのベストプラクティス 1 min Blog PCBバリアントは、古い設計から作られた新しいレイアウトだと単純に考えられがちです。しかしながら、配線とレイアウトに工夫を凝らせば、半田ブリッジジャンパーを使って1つのPCBレイアウトの一部を複数のバリアント用に構成することができます。その結果、トレースの再配線や回路図の変更を行わずにPCBのバリアントを素早く作成できます。PCBレイアウトでジャンパーを使用する場合は、他の設計上の問題が生じないようにいくつかの重要なガイドラインに従う必要があります。では半田ブリッジジャンパーを取り上げ、これらのジャンパーを使って設計のバリアントを素早く作成する方法について見ていきましょう。 半田ブリッジジャンパーとはどのようなものでしょうか。 半田ブリッジジャンパーとは、半田ボールで簡単にブリッジできる、PCB トレース上の1対のパッドに過ぎません。ゼロオーム抵抗を使ってブリッジを作る場合、はるかにきれいなレイアウトができます。ゼロオーム抵抗は非常に低コストで、表面実装コンポーネントとして利用できます。以下に示す例のように、半田ブリッジジャンパーは半田付け可能である必要はない場合があります。 以下の画像では、ブリッジしたジャンパーとブリッジしていないジャンパーをレイアウトの特定の箇所に配置しています。ブリッジしたジャンバーをブリッジしていないジャンパーに置き換える、またはその逆を行って、半田付けやゼロオーム抵抗の配置に悩むことなく、レイアウトを素早く変更して新しいバリアントを作成できます。バリアントを作成した後でも、アセンブリ後に任意のジャンパーをブリッジして引き続きデバイスを構成できます。 基板設計ソフトウェアのCADツールを使って、半田ブリッジジャンパーの 回路図シンボルとPCB フットプリントを容易に作成できます。上の例では、2つのシンボルとPCBフットプリントを作成しています。一対はブリッジしたジャンパー用で、もう一対はブリッジしていないジャンパー用です。上のレイアウトで示した回路図シンボルは以下の画像で見ることができます。ブリッジしたジャンパーとブリッジしてないブリッジを交換するだけで、各種回路ブロックをアクティブ化または非アクティブ化した新しい基板を容易に作成できます。 半田ブリッジジャンパーを使用する理由 半田ブリッジジャンパーは、基板を構成可能にする優れた手段です。「構成可能」とはつまり、1つの基板設計は定義済みのレイアウトと配線で作成できるが、関連する信号経路をアセンブリ中に選択できるということを意味します。設計者は、各種ジャンパーの配置位置を注意深く選ぶことで、複数のバリアントに使用するPCBレイアウトを作成できます。 半田ブリッジジャンパーは特定の周辺機器に必要かどうかに応じて、さまざまな信号経路に配置して回路を開閉できます。ジャンパーを閉じる場合は、ブリッジする2つのパッド間に少量の半田を付けるだけです。これにより閉回路が作成され、電流がジャンパー経由で下流の部品に流れるようになります。これにはフロントエンドの配線にひと工夫必要になります。それでも、設計者は各バリアントのレイアウトを追加作成するのではなく、1つのレイアウトから複数のバリアントを作成できます。 特定の回路ブロックを簡単にオンにするために、半田ブリッジジャンパーを使用したい場合もあります。最近のプロジェクトでは、複数の半田ブリッジジャンパーを使って、同じレイアウトから試作品と既製バリアントを作成しました。ブリッジを開閉するだけで、コンポーネント、回路ブロック、または周辺機器への接続をアクティブ化したり非アクティブ化したりすることができます。 半田ブリッジジャンパーのいくつかのベストプラクティス 半田ブリッジジャンパーのレイアウト内での配置場所を選ぶ際に考慮すべき最も重要なことは、誰が基板を組み立てるのか、アセンブリ後に基板を構成する必要があるかどうか、あるいは、製造業者が 同じ基板のバリアントをパネルに収容できるかどうかという点です。ゼロオーム抵抗を使用しているか、半田付けでジャンバーを閉じる予定の場合、各種コンポーネントを同じパネル内の複数の基板上に装着させない(DNP)ように製作者に依頼すると、製作者は途方に暮れたような様子になるかもしれません。(最近私が経験したように)製作者に長々と説明するのを避けたければ、上に示したような銅ブリッジしたジャンパーを使用した方がよいでしょう。 半田ブリッジジャンパーを使いやすくするには、回路図やPCBレイアウトでの配線に十分注意を払う必要があります。さらに、次の設計上のポイントにも注意してください。 伝送線路に注意する 伝送線路にゼロオーム抵抗や半田を配置する場合は、ドライバー端部のごく近くで使用することをお勧めします。ジャンパーをドライバーから離れた場所に配置して開状態にしておくと、 開状態の伝送線路が出来上がり、特定の周波数に反応するアンテナとして機能することになります。ジャンパーをドライバーの近くに配置すれば、ジャンパーが開いたままでも残った銅が伝送線路として機能することはありません。 高圧線に半田ブリッジジャンパーを配置してはなりません 記事を読む