筆者について

Zachariah Peterson

Zachariah Petersonは、学界と産業界に広範な技術的経歴を持っています。PCB業界で働く前は、ポートランド州立大学で教鞭をとっていました。化学吸着ガスセンサーの研究で物理学修士号、ランダムレーザー理論と安定性に関する研究で応用物理学博士号を取得しました。科学研究の経歴は、ナノ粒子レーザー、電子および光電子半導体デバイス、環境システム、財務分析など多岐に渡っています。彼の研究成果は、いくつかの論文審査のある専門誌や会議議事録に掲載されています。また、さまざまな企業を対象に、PCB設計に関する技術系ブログ記事を何百も書いています。Zachariahは、PCB業界の他の企業と協力し、設計、および研究サービスを提供しています。IEEE Photonics Society、およびアメリカ物理学会の会員でもあります。

最新の記事

PCB取り付け穴 メッキPCB取り付け穴のPCB接地手法 1 min Blog 基板を筐体に配置するときは、何らかの方法でその筐体に取り付ける必要があります。PCBの表面をネジで傷つけずに確実に取り付けるには、通常はメッキスルーホールをただコーナーに配置します。このPCB取り付け穴は通常、ソルダーマスクの下にパッドが露出しているため、必要に応じて取り付けポイントをネットの1つに電気的に接続できます。この場合によく発生する問題の1つは、接地とPCB取り付け穴です。取り付け穴を設計で接地する必要がある場合、どのように接地する必要があるのか?筐体に接続するのか、内部接地のみに接続するのか、それとも別の場所に接続するのか? これは楽しい質問で、答えは通常、「必ずすべき/絶対にすべきではない」という具合になります。取り付け穴は必ず筐体に接地しているという人もいれば、設計が台無しになるので絶対に接地すべきではないという人もいます。このように定められたほとんどの設計ルールと同様に、実際の答えはより複雑で、入力電力から接地系の構造に至るまで、設計の多くの側面が関わります。PCBへの入力で電源と接地がどのように定義されているかを理解していれば、接地を適切に考慮した取り付け方法を設計することが容易になります。 PCB取り付け穴の設計方法 名前が示すように、PCB取り付け穴は、回路基板を筐体に固定するために使用されます。PCB取り付け穴に関しては、誰もが同意するいくつかのポイントがあります。 金属ネジで取り付けることができるように、取り付け穴は一般的にメッキされている必要がある。 浮遊する金属片はEMIの発生源となるため、取り付け穴は何らかのGNDネット(アース(PE)、信号GND (SGND)、接地済み筐体など)に接続する必要がある。 取り付け穴は、標準サイズの留め具に対応するサイズにする必要がある。 取り付け穴はメッキなしでもかまわないが、設計でプラスチック製のネジやスタンドオフを使用する場合以外は望ましいやり方ではない。 これについては、 位置決め穴に関する以前の記事で少し詳しく説明しました。というのは、一部の有名企業では取り付け穴と位置決め穴を区別していないからです。設計者にとって、このように区別することは重要です。取り付け穴はほぼ確実に基板の接地系の一部になるし、設計におけるEMIと安全性にこの相違がどのように影響するかを正確に考慮する必要があるからです。 メッキした取り付け穴を筐体に接続することはベストプラクティスであり、そのような接続が可能な場合は、筐体の接地をアース接地に接続することができます。ただし、筐体内に金属元素があるバッテリー駆動システムなどでは、必ずしもそうとは限りません。PCBの取り付け穴、筐体、およびアースの接続方法によっては、デバイスでEMIが発生したり、ユーザーが感電したりする可能性があります。後者のケースは、電源の筐体がアースに十分に接地されていないか(プラグを差し込んだとき)、マイナス電源端子が十分に接地されていない場合に(プラグを抜いたとき)、コンピューターの電源で発生するおそれがある問題の1つです。適切なアース接地接続を含め、PCBの接地手法を適切に行えば、フローティング接地をなくすことができます。それが、金属筐体の接地したPCB取り付け穴の主な用途の1つです。 PCBの接地手法と取り付け穴 上の画像は、過度に一般化したものではありません。場合によっては、取り付け穴を基板に接地する必要がまったくなく、代わりに筐体に接地する必要があります。それ以外の場合、選択の余地はありません。接地する場所が他にないため、取り付け穴を内部接続に接地する必要があります。取り付け穴に適用するPCB接地手法では、対処の必要な電流、その電流の周波数、ESDなどの安全性の問題を考慮する必要があります。残念ながら、考えられるあらゆる状況に対応できる単独のアプローチはありませんが、PCBの取り付け時に生じる接地接続をどのように考えたらいいのかは、以下のポイントを参考にしていただければと思います。 ケース1: 低電流DC、ガルバニック絶縁なし 以下の表は、標準的なPCB接地手法の一環として、メッキPCB取り付け穴をどのように扱うのかという状況をいくつか示しています。ここでは、3線式DC(POS、NEG、アースGND接続)、2線式DC(POSとNEGのみ)、3 線式ACをDCに整流した場合を検討します。 入力電力 金属筐体 記事を読む
高速PCBレイアウトガイドライン 高速PCBレイアウトのガイドライン:配置のヒントと戦略 1 min Blog 不動産業界では、「立地、立地、立地」という言葉がよく使われます。興味深いことに、高速PCBレイアウトにおいても同じことが言えます。 高速PCB設計プロセスのすべての側面が重要ですが、特に部品の配置は、簡単な配線、EMIの最小化、そして追加のレイヤーが不要になる可能性を高めるために特に重要です。標準的なPCB設計で問題なく機能する配置方法でも、高速設計の厳しい信号フロー要件を満たさない場合があります。設計が機能するためには、本当に「立地、立地、立地」がすべてです。 高速PCBレイアウトを作成する際に考慮すべきいくつかのヒントと戦略をここで紹介します。まず、高速設計における基本的な部品配置の考慮事項を見ていきます。次に、ボード上に部品を配置する前にフロアプランを作成する利点について説明します。最後に、そして決して重要性が劣るわけではありませんが、終端抵抗の配置について議論します。 高速PCBレイアウトにおける部品配置 PCBレイアウトは、多くの競合する目標を持つ難しいパズルのようなものです。しばしば、あるフォームファクターの制約や層数の目標を満たす必要があり、これらの制約やその他多くの要件を満たすように部品を配置する必要があります。 高速PCBレイアウトでは、部品は一般的に以下の方法で配置されるべきです: 回路ブロックごとにグループ化する:まず、システム内で特定のタスクを実行するコンポーネントをまとめます。例えば、電力調整に関わるすべてのコンポーネントを一緒にグループ化するべきです。 大きなプロセッサの周りにグループ化する:これらのコンポーネントは高いI/O数を持ち、グループ化された回路ブロックと直接インターフェースします。中央のプロセッサの周りに第一レベルの回路ブロックを配置し、その周りに下流のブロックを配置しようと試みてください。 ルーティングチャネルへのアクセスによってグループ化する:別のコンポーネント上の共通インターフェースにアクセスする必要がある一連のコンポーネントがある場合、これらのコンポーネントのピンが互いに向き合うように配置しようとしてください。これが常に可能というわけではありませんが、成功すれば内部層を通過したり、他のコンポーネントの周りを長いパスでルーティングする必要はありません。 下の画像では、レイアウトの最も右側に大きなMCUがあり、その周りにはピンがMCUを向いて配置された他のコンポーネントがグループ化されているのがわかります。左側にさらに進むと、コネクタ、LED、およびいくつかの受動部品などの二次コンポーネントが見えます。これらは大まかにMCUの一方の側面を向くように並べられています。これにより、MCUから左側のボード領域へ直接ルーティングすることが可能になります。 高速PCBレイアウトの例 回路の機能ブロックの配置を計画する際には、電源とグラウンドプレーンのニーズも考慮してください。通常、連続した電源プレーンの使用が好まれますが、設計のニーズにより複数の電圧用に分割された電源プレーンが必要な場合は、分割された部分をまたいで接続されたコンポーネントを配置する際に注意してください。高速伝送線は電源プレーンの分割を横切るべきではありません。それによって、これらの信号の リターンパスが途切れてしまいます。また、その回路の一部ではない他のコンポーネントを、その回路のコンポーネント間に配置することも避けてください。これもその回路のリターンパスに影響します。 部品配置における異なるコンポーネントブロック、コネクタ、その他の回路についてもう少し詳しく見てみましょう。 レイアウトのフロアプランニングによる配置準備 配置のためのフロアプランを作成することは、高速PCBレイアウトを準備する効果的な方法です。事前に計画することで、上述したようなコンポーネントのグループを考慮に入れることができ、設計の最後の段階で配置される際に驚くことがありません。 機能ブロック 電源、RF、デジタル、アナログなどの回路の機能ブロックは、信号の交差を最小限に抑えるために、グループとして整理して配置するべきです。事前配置フロアプランにより、機能ブロック間の信号フローがどのようなものか、そしてそれに最適な計画方法を把握できます。例えば、可能な限り低周波数のアナログを一緒にグループ化することで、高周波数または高速信号がアナログ回路の敏感な領域を横切る必要がなくなります。 EMIとコネクタ 高速動作するデバイスを基板の端に近づけて配置するのは避けるべきです。これは、基板の端が開いた空洞のように機能し、電磁放射が基板の端から漏れ出る可能性があるためで、これにより他のコンポーネントに影響を与える電磁干渉(EMI)が増加する可能性があります。 記事を読む
アナログGNDおよびデジタルGND接続にスターポイントを使用する方法 アナログGNDおよびデジタルGND接続にスターポイントを使用する方法 1 min Thought Leadership 私にとってデートで一番難しいのは、そもそも人に会うことです。私は技術者なので、生活の大部分をコンピューターの前で過ごし、いろいろな人と話をすることがありません。それが、デートサイトやデートアプリが素晴らしいアイデアだと思う理由の1つです。他の方法では全く不可能であろうつながりを持つのに役立ちます。他の人と絆を結ぶことは困難ですが、アナログGNDプレーンとデジタルGNDプレーンをリンクするのは、さらに困難です。ノイズが多いデジタルチップは、敏感なアナログ回路に干渉する場合があります。したがって、この2つは離す必要がありますが、一方で同じGNDに参照される必要もあります。プレーンを行き当たりばったりに接続すると、解決できないほど問題が発生する場合があります。そこでスターGNDの出番です。スターGNDでは、デジアナ混在信号回路の異なるGNDを結合できます。 デジアナ混在信号接地の問題 デートと同じように、デジアナ混在信号PCBの接地は、多くの 問題と解決策 があり複雑です。ご存知のように、EMIを減らすには、アナログ信号とデジタル信号を離しておく必要がある一方で、これらは一緒に接地する必要があります。接地が不適切だと、大きなGNDループができて、回路の中やおそらく周囲にノイズが発生します。 デジアナ混在信号基板での主な問題は、デジタル回路です。デジタルスイッチングチップは、ノイズが非常に多いのですが、単独では問題になりません。しかし、アナログ回路と組み合わせると、デジタルEMIはしばしば、 敏感なアナログ信号と混じって しまいます。このような理由で、一般に、 これらの2つのシステムは離しておく べきなのです。 アナログ回路とデジタル回路を離すことで、別の問題が発生します。それは、浮動接地です。アナログチップとデジタルチップは全て、適切に動作するため、 同じGNDに関連付ける 必要があります。別々のアナログGNDプレーンとデジタルGNDプレーンを好きな場所に接続すると、GNDループができます。大きなGNDループは、 アンテナの役目を果たし 、基板の他の部品に、またおそらく デバイスの外に EMIを放射します。スターGNDでは、アナログ回路とデジタル回路を一箇所に接続できます。すると、GNDループやEMI放射の可能性が低くなります。 全てのGND接続はスターGNDで終端する必要があります。 スターGND 多くの人々が、愛について説明しようとして失敗してきました。私はそれほど大胆ではないので、スターGNDの概要を述べるだけにします。 記事を読む
ESDとは何か、ESDはどのようにPCB設計に影響するか? ESDとは何か、ESDはどのようにPCB設計に影響するか? 1 min Blog 電気技術者 電気技術者 電気技術者 2、3年南部に住んだ後、乾燥した西部に引っ越したところでした。私は、ここで育ちましたが、しょっちゅう静電気がバチッと起こるのを忘れていました。南部は湿度が高いので、空気の導電性が高くなります。一方、ここでは空気が乾燥し、絶縁されているので、静電気の衝撃は、ずっと大きくなります。子供の頃、靴下でカーペットの上を走り回り、お互いに静電気のショックを与えようとしたものです(結婚式では大いにひんしゅくを買い、注意されました)。 ショックを受けるごとに、今でも驚きますが、被害はありません。電子機器の場合は、そうはいきません。人が感じないほどのわずかな電圧によって破壊される場合もあります。その結果、PCB設計での軽減や保護を計画することが重要になります。 故意でなくても歩くだけで、ショックに十分な電圧差が簡単にできます。 ESDとは何か? 静電放電 (ESD)が発生するのは、電荷の異なる2つの物体が、物体間の絶縁が破壊されるほど近づいた、または帯電したときです。家庭用製品の場合、この破壊は通常、空気中で発生し、電圧は40kV/cmを超えます。 稲光は、最も身近なESDであり、雲と地面が巨大なコンデンサーを形成します。それほど劇的ではありませんが、夜にフリースやウールの毛布を振ると、小さな閃光が飛ぶのを見ることができます。 稲光は大規模な静電放電であり、雲と地面の間の空気の絶縁が破壊されたときに起こります。 これがPCBにどう影響するのか? 人やパッケージ、ケーブル、毛皮で覆われたペット、または反対の電荷を含む他の物体に触れると、または接近すると、どのPCBもESDの影響を受ける可能性があります。 触れる と、その電圧が放電され、比較的大きな電圧スパイクが発生します。電圧スパイクが逃げる際、放電電流がPCBで電磁場を生成します。 ESD保護 の目標は、放電とそれによって生じるEMの 影響を最小化 することです。 特に、多くの最新のチップセットは、非常に小さなリソグラフィパターンを使って作成され、高電圧に対する耐性が、ほとんどまたはまったくありません。その動作電圧である3.3Vを超えるDC値でも同じです。これらのコンポーネントの1つに直接到達するESD事象は通常、悲惨な結果をもたらし、ICを完全に破壊していまいます。 PCB設計のほぼあらゆる要素(トレース、配線、レイヤー、コンポーネント配置、スペーシング)が、基板のESD保護に影響する可能性があります。つまり、設計プロセスの初期にESDを考慮する必要があります。そうしないと、配線やコンポーネント配置の問題を修正するため、大規模なPCB設計変更が必要になるおそれがあります。 製品でESDの原因になるのは何か? 翼竜のような幅広い翼や、静電気を集める大きな足を持つ巨大生物を回避しても、まったくありふれた活動からESD事象は発生します。しばしば、歩くだけでも、普通のコンポーネントを破損するのに十分な電荷が蓄積されます。 記事を読む