製造技術者

In PCB design, a Manufacturing Engineer is a highly skilled professional who is responsible for designing, implementing, and reviewing procedures involved in the manufacturing process. They research automation techniques to maximize production efficiency or plan factory workflows to optimize how products are made across multiple departments. Manufacturing Engineers are experts at finding a balance between reducing costs, maximizing quality, and ensuring that procedures meet safety and environmental requirements.

Manufacturing Engineers in PCB design may also be referred to by other job titles, such as Manufacturing Assembly Engineer, Manufacturing Process Engineer, Manufacturing Manager, or CAM Engineer. These titles reflect the diverse range of skills and expertise required for success in this role, from process optimization and automation to supply chain management and regulatory compliance. Overall, Manufacturing Engineers play a critical role in the PCB design industry, ensuring that products are manufactured with the highest level of efficiency, quality, and safety.

Filter
見つかりました
Sort by
役割
ソフトウェア
フィルターをクリア
SAPによるウルトラHDI PCB製造 超高精細HDI PCB製造における半加工プロセス(SAP)の探求 1 min Blog PCB設計者 電気技術者 購買・調達マネージャー +1 PCB設計者 PCB設計者 電気技術者 電気技術者 購買・調達マネージャー 購買・調達マネージャー 製造技術者 製造技術者 PCB技術が進化し続ける中で、超高密度インターコネクト(UHDI) PCB製造のような新しい製造技術が信じられないほどの可能性を解き放っています。最も変革的な進歩の中には、従来の減算エッチングでは達成できなかったより細かいトレースとスペースを実現する、半加算プロセス(SAP)と修正半加算プロセス(mSAP)があります。これらの革新は、PCB設計の限界を押し広げ、前例のない精度で複雑な回路を製造することを可能にしています。 PCB製造の文脈では、半加算プロセス(SAP)は、従来の減算方法からの脱却を提供し、減算エッチングで可能だった2ミルの閾値をはるかに下回る、これまで達成できなかったトレースとスペースを可能にします。SAPプロセスは、銅のような導電性材料を追加して回路を形成することを可能にし、それをエッチングで取り除くのではなく。この技術は、先進的な材料と組み合わせることで、高性能で小型化されたデバイスを含む次世代の電子機器をサポートする超微細な特徴サイズの扉を開きます。 PCB製造における半加算プロセスの主な利点 極端なミニチュア化 SAPおよびmSAP技術で最もエキサイティングな機会の一つは、PCBフットプリントを大幅に削減できる能力です。トレースとスペースの寸法がサブミクロンレベルに縮小することで、設計者は全体的な電子システムのサイズを劇的に小さくするか、または解放されたスペースを利用して、より大きなバッテリーや強化された機能性などの追加コンポーネントを統合することができます。これは、スマートフォン、ウェアラブル、IoTデバイスなど、スペースがプレミアムなデバイスにとって特に重要です。 簡素化されたレイヤリングと向上したルーティング効率 これらのプロセスのもう一つの重要な利点は、PCB設計で必要なレイヤー数を削減できる可能性です。タイトピッチのボールグリッドアレイ(BGAs)を持つコンポーネントや標準的な設計であっても、より少ないレイヤーで複雑な信号をルーティングできる能力は、コストと複雑さの両方を削減できます。レイヤーが少ないということは、マイクロビアとラミネーションサイクルも少なくなり、製造時間が短縮され、全体的な収率が向上します。機能性を維持または向上させながらレイヤー構造を簡素化できる能力は、信頼性と性能の両方の観点から大きな勝利です。 改善された信号整合性と精度 ミニチュア化とレイヤー削減は具体的な利点ですが、SAPプロセスは電気性能を大幅に向上させることもできます。最も重要な改善点の一つは、信号の整合性です。半加算プロセスは、より広範な減算エッチングプロセスではなく、正確なイメージング技術に依存しているため、トレースの幅と間隔をより細かく制御できます。これにより、インピーダンスの制御がより厳密になり、信号の劣化が減少し、これらの技術を高速デジタルおよびRFアプリケーションに理想的にします。 半加算エッチング対減算エッチング:簡単な概要 従来の減算エッチングプロセスは、銅被覆されたラミネートから始まり、不要な銅をエッチングして回路パターンを形成します。このプロセスは効果的ですが、銅の厚さと使用されるエッチング方法のため、細かいトレースとスペースを達成することには限界があります。 対照的に、半加算プロセスは、非常に薄い銅層または純粋な加算方法の場合は銅が全くない状態から始まります。銅は選択的に追加され、望ましいパターンを作成し、薄いシード層のみが除去される必要があります。この精度により、製造業者のイメージング能力にもよりますが、トレースは25マイクロン(またはそれ以下)という非常に細かい特徴を実現できます。 改良半加算プロセス(mSAP) 変更された半加算プロセス(mSAP)は、SAPの拡張であり、スマートフォンのような消費者向け電子機器の大量生産によく使用されます。主な違いは、開始する銅層にあります。mSAPはやや厚い箔から始まり、その結果、やや精密でないトレースプロファイルになります。mSAPは優れた特徴サイズを可能にしますが、トレース/スペースの範囲は通常30ミクロンで、開始する銅が厚いためトレースはより台形の形状をしています。 これらの違いにもかかわらず、mSAPは従来の減算法よりもはるかに細かい特徴を実現し、標準的なPCBと高度な基板レベルの製造技術の間の橋渡しと見なされています。このアプローチは、コストに敏感な大量アプリケーションで重要です。 基板のようなPCB(SLP)と超HDIの未来 この分野で頻繁に使用される用語は「基板のようなPCB」(SLP)で、これは加算または半加算プロセスで構築された回路基板を指します。SLPは、半導体基板の精度に近づく細かい特徴を可能にしますが、はるかに大きなPCBパネル上です。これは、伝統的なPCB製造のコストとスケーラビリティの利点を犠牲にすることなく、ミニチュア化が求められるアプリケーションにとって特に有利です。 典型的なSAPおよびmSAPプロセスフロー SAPとmSAPの両方について、プロセスフローは類似した手順に従います: 記事を読む
ベンダーロックインとPLMソリューション ベンダーロックインとPLMソリューション:OEMとEMSの視点 1 min Blog 購買・調達マネージャー ITマネージャー 製造技術者 購買・調達マネージャー 購買・調達マネージャー ITマネージャー ITマネージャー 製造技術者 製造技術者 ビジネスエコシステムの広大な範囲において、ニッチに関わらず企業が繰り返し恐れることの一つがベンダーロックインです。この懸念は、製品ライフサイクル管理(PLM)ソリューションに関しては明らかです。このトピックに踏み込み、オリジナル機器メーカー(OEM)と電子製造サービス(EMS)企業がPLMに対してさまざまなためらいと期待を持つ理由を探ります。 そもそもベンダーロックインとは何か? ベンダーロックインは、時に「顧客ロックイン」と呼ばれ、他の選択肢を探求したり、変化する状況に適応したりすることができないように感じさせる関係のようなものです。ビジネス用語では、それは依存についてです。PLMソリューションに焦点を当てると、その意味は深いです。あなたの PLMシステムは、多くの点で、製品の誕生、生涯、そして最終的な引退を指揮します。したがって、製品やサービスの独占的な取引を確定する前に、進化するニーズに合致するパートナーを選択することが重要であることは言うまでもありません。 それを見る別の方法は、音楽が変わったり、あなたのダンススタイルが進化したとしても、一芸に秀でたポニーと踊り続けているような状況を想像することです。PLMの文脈では、単一のソフトウェアソリューションプロバイダーに依存することを意味します。これは、製品の設計、生産、管理、廃棄の方法を決定する特定のツールにコミットすることに似ています。かなりのコミットメントですね! ベンダーロックインに関する歴史的視点 デジタル製品やクラウドソリューションの時代が始まるずっと前から、ビジネスはベンダーにコミットする際に常に少し不安を感じていました。古くからのストリートマーケットを考えてみてください。特定の魚屋にコミットするかもしれません。そのベンダーが突然価格を上げたり、魚の品質が落ちたりした場合、あなたは厄介な状況に置かれました。今日の ベンダーロックインは、特にPLM分野で、これら古くからの市場のダイナミクスを反映していますが、はるかに複雑なスケールでです。単純な依存から始まったものが、ソフトウェアの依存関係、カスタマイズ、統合の複雑なダンスへと変化しました。技術が私たちの仕事の布地に深く織り込まれるにつれて、「ロックイン」されることのリスクは高まる一方です。 なぜOEMが躊躇するか 複雑な製品構造: 詳細:OEMは、複雑な構造を持つ製品を管理します。スマートフォンや自動車のように、多数の部品で構成され、それぞれが異なるサプライヤーから調達され、それぞれが独自のライフサイクルを持っていると考えてください。 ロックインの課題:進化しないPLMシステムに縛られていると、OEMは製品の複雑さを管理する際に障害に直面する可能性があり、それによって潜在的な遅延、コスト増加、市場の誤算が生じる可能性があります。 IPセキュリティ: 詳細:IPはOEMの最も価値のある宝です。それは研究、革新、そして大きな投資の結果です。 ロックインの課題:単一のベンダーにIPを任せることは気がかりです。ベンダーがセキュリティで不足している場合、または別のベンダーへの移行が弱点を露呈させる場合、それは独自の設計、方法論、または技術を危険にさらす可能性があります。 コストの懸念: 詳細:PLMシステム間の移行は、家を移動するようなものです。それは新しい場所だけでなく、プロセスと潜在的な損失についてです。 ロックインの課題:根強いPLMシステムは、大きな移行コストを意味します。金銭的な費用だけでなく、時間、人的資源、潜在的なデータ損失、進行中のプロジェクトへの影響も考慮してください。 EMSの視点 柔軟性: 記事を読む
AIによる電子製造への影響 AIによる電子製造への影響 1 min Blog 電気技術者 購買・調達マネージャー 製造技術者 電気技術者 電気技術者 購買・調達マネージャー 購買・調達マネージャー 製造技術者 製造技術者 人工知能(AI)は多くの産業にとって変革の源泉であり、電子製造業も例外ではありません。製品開発の加速から品質の向上、 サプライチェーンの強化に至るまで、AIは電子メーカーが製品を設計、プロトタイプ作成、調達、および製造する方法を革命的に変えています。電子エンジニアや製造業の専門家にとって、このAIによる変化を理解することは、急速に進化するセクターで現状を維持するために不可欠です。 概念から創造へ:AIが設計を加速 電子製造におけるAIの最も重要な影響の一つは、製品開発と設計を加速することです。従来の設計は主に反復的で、時間がかかり、エラーの可能性があります。しかし、AIの進歩により、メーカーは以下の能力のおかげで新製品をより速く市場に投入できるようになりました: 自動設計ツール–今日のAIによって導かれる自動設計ツールは非常に強力で、信じられないほどの速さでPCBレイアウトを生成できます。これらは数分以内に無数の可能な設計を分析でき、人間のエンジニアが数週間かかる作業です。この超人的な能力は、パフォーマンスを向上させると同時に生産コストを最小限に抑える最適な設計につながります。 加速されたプロトタイピング - AIは非常に迅速なプロトタイピングを可能にします。機械学習アルゴリズムを使用することで、AI駆動のツールは迅速に多くの設計代替案を試し、物理的なプロトタイプを作成する前にさえ、性能をシミュレートし、可能性のある問題を特定できます。この仮想プロトタイピングにより、迅速なアイデア出しを実現し、メーカーは概念から最終設計により速く移行できます。 AIが設計にどのように影響を与えるかの優れた例は、 スマートフォン業界です。AppleやSamsungのような主要なスマートフォン企業は、AIを使用してチップ設計やバッテリー性能を最適化しています。AIアプリケーションはまた、大量のユーザーデータを分析して使用パターンを予測し、より効率的な電力管理とデバイス性能の向上を可能にします。 精密生産:AIがリードを取る 予測保守 - 今日のよりインテリジェントなAIシステムから、予測保守が大きな後押しを受けています。製造装置に組み込まれたセンサーからのデータを分析することで、AIは異常を検出し、発生する前に潜在的な故障を予測でき、運用を継続させるためのタイムリーなメンテナンスを可能にします。この予防的アプローチは、生産遅延がしばしば極めて高価である世界で、予期せぬダウンタイムを最小限に抑える貴重な利点です。 品質管理-工場の床で、AIは新しい効率性と改善された品質基準を生み出しています。AIベースの視覚検査システムがますます一般的になっています。これらのシステムは、非常に高い生産率の環境でさえ、人間の検査員よりも正確かつ一貫して欠陥を見つけることができます。 プロセス最適化-機械学習アルゴリズムを備えたAIシステムは、大量の生産データを分析し、非効率性を巧みに特定し、プロセス改善を提案することができます。これにより、最適化された生産スケジュール、削減されたエネルギー消費、および改善されたリソース配分が実現します。 大量生産から大量カスタマイズへのシフト AIは、電子製造におけるカスタマイズの新時代をもたらしています。機械学習アルゴリズムと高度なデータ分析を活用することで、製造業者はこれまでにないレベルの製品パーソナライゼーションを提供することができるようになりました。消費者電子製品セクターでは、AI駆動の製造プロセスにより、企業はユーザー固有の機能を備えたスマートフォンや個々の健康プロファイルに合わせたウェアラブルを生産することができます。例えば、 モトローラのMoto Makerプラットフォームは、AIを利用してカスタマイズされたスマートフォンの生産を最適化し、顧客が多様なデザインオプションから選択できるようにしています。 記事を読む
半導体製造をより持続可能にするための化学プロセス 半導体製造をより持続可能にするための化学プロセス 1 min Blog 購買・調達マネージャー 製造技術者 購買・調達マネージャー 購買・調達マネージャー 製造技術者 製造技術者 現代生活に不可欠である半導体製造は、エネルギーと資源を大量に消費する産業であり、電気、水、化学薬品、プロセスガスの消費が増えることで、エネルギー使用量と環境への影響が大きくなるという不幸な現実があります。これは、高度なチップ製造の複雑さが増すことと需要が増加することでさらに悪化しています。 「現在の成長パスがそのまま続けば、 今後数年間で半導体生産による炭素排出量は年約8%増加し2045年ごろにピークに達するだろう」とボストン・コンサルティング・グループは述べています。 これらの課題に対応し、世界中の政府が より厳しい環境規制を実施し始める中での圧力が増す中、半導体産業は、より環境に優しいプロセスに向けたイノベーションイニシアチブと研究開発努力を目指しています。代替ソリューションが注目を集め始めています。 ここでは、企業が直面する主要な課題と、半導体生産をより持続可能なものにするために化学プロセスがどのように進化しているか、そしてその移行を先導している業界リーダーについて詳しく掘り下げます。 持続可能性を達成するための重要な課題 地球温暖化ポテンシャル(GWP):特定の期間(通常は100年)にわたって、温室効果ガスが大気中に閉じ込める熱の量を、二酸化炭素(CO₂)と比較して測定したものです。GWPが高いガスは、地球温暖化により大きく寄与します。 半導体製造をより持続可能なものにする最大の障害の一つは、製造に使用される多くの化学物質が、プロセスに不可欠でありながら環境に有害であるという事実です。必要であるとしても、適切に管理されない場合、これらの物質はしばしば有毒であり、人の健康と環境にリスクをもたらします。これらの化学物質から生じる廃棄物も処分が困難であり、さらなる環境問題を引き起こすことがあります。 半導体産業は、高いGWPガスの放出や膨大な水とエネルギーの消費により、その顕著な環境への影響で批判を受けています。これらの化学物質は半導体の機能性と性能には不可欠ですが、その環境への影響を完全に理解するには、少し遡って考えるだけで十分です。 1970年代から1990年代にかけて、アメリカ合衆国が半導体生産の主要勢力であった時期には、製造工場に関連する環境ハザードが広く認識されていませんでした。この期間中、多数のファブ(半導体工場)が存在するシリコンバレーは、連邦政府の清掃対象リストである国家優先事項リストに掲載されるほど汚染されたスーパーファンド(環境浄化対象地域)の場所となりました。例えば、1968年から1981年にかけて稼働していたIntelのサイトでは、EPA(環境保護庁)が地下水中にヒ素、クロロホルム、鉛を含む十数種の汚染物質を特定しました。 現在、業界は持続可能性に対して積極的かつ先見的な姿勢を取っていますが、これらの出来事は技術進歩と環境保全のバランスの重要性を強調しています。 半導体製造における化学物質の役割 半導体製造は、エッチング、クリーニング、ドーピング、材料のパターニングに不可欠な様々な化学プロセスを含みます。これらの化学物質は高性能チップの生産に必要ですが、しばしば危険な廃棄物や温室効果ガスの排出といった重大な環境上のデメリットを伴います。例えば: エッチング:ウェハー表面から材料の層を取り除き、チップの機能を定義する複雑なパターンを作成します。エッチングプロセスに使用されるパーフルオロカーボン(PFC)は、高度なマイクロチップに必要な詳細な構造を作成する効果があるため、ほぼ置き換えが不可能です。残念ながら、これらのガスは二酸化炭素よりも何千倍も高いGWP(地球温暖化ポテンシャル)を持っており、気候変動への影響が不釣り合いに大きいです。 クリーニング:ウェハーは、不純物を取り除くために、さまざまな段階で入念にクリーニングする必要があります。溶剤、酸、および塩基の使用は、半導体デバイスに必要な極端な純度レベルを達成するために不可欠です。残念ながら、これらの化学物質はしばしば有害であり、大量の廃棄物を生じさせます。 ドーピング:半導体材料に不純物を添加してその電気的特性を変更するプロセスです。アルシンやフォスフィンのような非常に有毒な化学物質がドーピングに一般的に使用されます。 持続可能性のための化学プロセスの革新 これらの化学プロセスの環境への影響を認識し、半導体産業は生産をより持続可能にするための代替手段や革新を積極的に探求しています。ここでは、最も有望な開発のいくつかを紹介します: より環境に優しい溶剤と洗浄剤 記事を読む
バイヤーが3PLプラットフォームの利用を検討すべきタイミング バイヤーはいつ3PLプラットフォームを利用すべきか? 1 min Blog 購買・調達マネージャー 製造技術者 購買・調達マネージャー 購買・調達マネージャー 製造技術者 製造技術者 電子機器製造の急速に進化する世界では、プリント基板(PCB)のような部品を効率的かつコスト効果的に調達することが重要です。バイヤーは、複雑な供給チェーンの管理、タイムリーな納品の確保、品質基準の維持という課題に直面することがよくあります。一つの解決策として注目されているのが、第三者物流(3PL)プラットフォームの利用です。しかし、バイヤーはいつ3PLプラットフォームの利用を検討すべきなのでしょうか?この記事では、3PLプラットフォームを利用するメリットとトレードオフを探り、バイヤーが情報に基づいた選択をするための意思決定チェックリストを提供します。 3PLプラットフォームを利用するメリット 1. 供給チェーン管理の効率化 メリット: 統合ソリューションとエンドツーエンドの可視性 3PLプラットフォームは、調達から配送まで、供給チェーンの全プロセスを効率化する統合ソリューションを提供します。これは、供給チェーンのすべての側面を管理する単一の統一システムを提供することを意味します。この統合により、非効率やエラーを引き起こす可能性のある複数の異なるシステムの必要性がなくなります。 3PLプラットフォームを利用することで、ビジネスは エンドツーエンドの可視性とサプライチェーン全体の制御を得ることができます。この可視性は、調達の初期段階から、倉庫保管や輸送プロセスを経て、最終的に製品がエンドカスタマーに届けられるまでをカバーします。このレベルの可視性は、ビジネスがリアルタイムでサプライチェーンを監視し、潜在的な問題を事前に特定し、情報に基づいた決定を下すために重要です。 さらに、AIや機械学習のような先進技術を3PLプラットフォームで使用することで、予測的な洞察を提供し、ビジネスが将来のサプライチェーンの混乱を予測し、予防措置を講じることを可能にします。 トレードオフ:直接制御の低下 3PLプラットフォームは多くの利点を提供しますが、一つのトレードオフは、ビジネスが特定のサプライチェーンプロセスに対する直接的な制御を低減する可能性があることです。ビジネスがサプライチェーン管理を3PLプロバイダーにアウトソーシングするとき、彼らは重要な機能を第三者に委ねます。これは、ビジネスがこれらの機能を効果的に実行するために3PLプロバイダーに依存しているため、サービスの品質に関する懸念を引き起こす可能性があります。 しかし、このトレードオフは、信頼できる3PLプロバイダーを慎重に選択し、明確なコミュニケーションとパフォーマンスの期待を確立することで軽減することができます。多くの3PLプロバイダーはパフォーマンス保証を提供しており、クライアントのニーズを満たすために堅牢な品質管理措置を講じています。 さらに、直接管理を減らすことは、ビジネスがコアコンピテンシーと戦略的イニシアチブに集中できるようにする利点として見ることができます。一方、3PLプロバイダーは、サプライチェーン管理の複雑で時間を要するタスクを監督します。 2. コスト効率 利点:規模の経済と大幅なコスト削減 3PLプラットフォームを使用する主な利点の一つは、それがもたらす コスト効率です。規模の経済を活用することで、3PLプラットフォームは運送業者やサプライヤーとより良い料金で交渉できます。これは、3PLプロバイダーが複数のクライアントのために大量の出荷を管理しているため、個々のビジネスが自ら得ることができる料金よりも低い料金を確保する交渉力を持っているからです。 これらのコスト削減は大きく、運賃や倉庫費用などの直接コストだけでなく、管理上のオーバーヘッドなどの間接コストも削減できます。例えば、ビジネスはサプライチェーンスタッフの採用とトレーニングのコスト、倉庫施設の維持、輸送および物流技術への投資を節約できます。 記事を読む
柔軟な回路設計で避けるべき一般的な間違い 柔軟な回路設計で避けるべきトップ10の一般的な間違い 1 min Blog PCB設計者 購買・調達マネージャー 製造技術者 PCB設計者 PCB設計者 購買・調達マネージャー 購買・調達マネージャー 製造技術者 製造技術者 フレキシブル回路の設計は、経験豊富なPCB設計者でさえも難しいと感じる独特の課題を提示します。フレキシブル回路は重量の削減、スペースの節約、複雑な形状への適応能力など、重要な利点を提供しますが、細部に注意を払う必要があります。この投稿では、フレキシブル回路設計でよくある間違いと、それらを避ける戦略について探ります。 1. 曲げ半径の要件を無視する 曲げ半径は、フレキシブル回路設計において重要なパラメータです。これは、 フレキシブル回路を損傷を引き起こさずに曲げることができる最小の半径を指します。この限界を尊重しないと、材料の疲労、亀裂、そして最終的には回路の故障につながる可能性があります。 間違い: 設計者は、スペースの制約やその重要性の理解不足のために、正しい曲げ半径を無視することがあります。この見落としは、限られた回数の曲げ後に故障しやすい設計につながる可能性があります。 回避する方法:問題を避けるためには、材料の厚さ、種類、層数に基づいて適切な曲げ半径を計算し、それに従うことが重要です。一般的なガイドラインとして、フレックス回路の厚さの少なくとも10倍の曲げ半径を維持することが推奨されます。この基準に従うことで、銅のトレースと誘電体材料への不当なストレスを防ぎ、回路の寿命を延ばすことができます。 フレックスPCBにおける静的曲げと動的曲げの詳細を学ぶ 2. 不適切な材料選択 フレキシブル回路設計における 材料の選択は、回路の性能、柔軟性、耐久性に大きな影響を与えます。間違った材料を選択すると、回路の効果が損なわれ、早期に故障する可能性があります。 間違い:よくある間違いは、特定の用途に適しているかどうかを考慮せずに、コストだけに基づいて材料を選択することです。例えば、頻繁に曲げる必要があるアプリケーションで、硬すぎる材料を選択すると、初期コストは抑えられるかもしれませんが、回路の故障につながる可能性があります。 それを避ける方法:材料選択は、アプリケーションの要件によって決定されるべきです。例えば、ポリイミドはその高い熱安定性と柔軟性のために人気がありますが、環境条件や特定の使用ケースに応じて、他の材料の方が適切な場合もあります。さらに、接着層にも注意を払うべきです。これは、回路の全体的な柔軟性と耐久性において重要な役割を果たします。 3. トレースルーティングにおける鋭角 フレキシブル回路のトレースルーティングは、特に回路が頻繁に動かされたり、曲げられたりするアプリケーションでは、機械的信頼性を確保するために慎重な検討が必要です。 間違い:一般的に、硬質PCBのトレースルーティングは鋭角で行われます。これは、曲げられたときにストレス集中の場所を作り出し、トレースに物理的な損傷を引き起こす可能性があります。 それを避ける方法:フレキシブル回路の場合、鋭角ではなく、滑らかで徐々に曲がるカーブでトレースをルーティングすることが望ましいです。鋭い曲がり角はストレスを集中させ、トレースの亀裂や剥離のリスクを高めます。さらに、可能な場合はより広いトレースを使用することで、曲げに対する機械的耐久性が向上します。 記事を読む
PCB設計者のためのコストのかかる遅延を避けるための重要なヒント コストのかかる遅延を避ける:PCBデザイナーのための重要なヒント 1 min Blog PCB設計者 技術マネージャー 製造技術者 PCB設計者 PCB設計者 技術マネージャー 技術マネージャー 製造技術者 製造技術者 PCB設計の注文を製造業者に保留されたことによるフラストレーションを経験したことはありますか?これは、特に新しいフレキシブル回路やリジッドフレックス設計において、多くのPCB設計者が直面する一般的な問題です。注文が行われると、スムーズな生産プロセスを期待していたものが、しばしばエンジニアリングに関する質問や明確化が必要であるために予期せぬ保留によってすぐに中断されることがあります。これらの保留は些細な不便ではなく、プロジェクトのタイムラインに重大な遅延をもたらし、スケジュールの乱れ、コストの増加、クライアントやステークホルダーとの関係に負担をかける可能性があります。 PCB製造の遅延は、しばしば予防可能であり、提出されたデータパッケージの問題から生じます。欠落している情報や不完全な情報、矛盾、見落とされた詳細が頻繁に生産を妨げ、保留を引き起こします。これらの一般的なエラーを事前に特定し、対処することで、プロセスを合理化し、PCBプロジェクトの成功率を向上させることができます。 ドキュメント:多くの遅延の根源 新しい設計の60%以上が、製造業者が工具設定とプロセスフローを整えている際に「保留」になることはよくあることです。この割合は、 フレックス回路とリジッドフレックス回路の設計ではさらに高くなることがあります。良いニュースですか?これらの問題のほとんどは予防可能です。注文を提出する前に、ドキュメントパッケージ全体と購入注文の要件を慎重に確認してください。すべてが含まれており、正確であることを再確認してください。 注目すべき主要領域 ドリルチャート:ドリルチャートは、PCBに必要な 特定のサイズ、数量、および穴の位置を概説します。ドリルチャートと提供されたドリルファイルの間の不一致は、プロジェクトが保留にされる最も一般的な理由の一つです。この不一致は、製造図面と実際の設計データが一致していないことを示しており、製造業者がプロセスを停止して説明を求めることを促します。これは、CAM(コンピュータ支援製造)プロセスを最初から遅らせ、不必要にプロジェクトのタイムラインを延長することがあります。 スタックアップ:スタックアップ情報は、PCB内の各層の配置、使用される材料、およびそれらの厚さを詳細に説明します。正確なスタックアップデータは、正しいインピーダンスを達成し、ボードが期待通りに機能することを保証するために不可欠です。 インピーダンス表: インピーダンス制御は高速回路にとって重要であり、インピーダンス表の誤りは、要求された電気的性能を満たさないボードを引き起こす可能性があります。指定されたインピーダンス値が実際の設計と一致していること、および必要な計算がすべて正しいことを確認することが重要です。ここでの不一致は、電気的仕様を満たさない製品につながり、再作業や、さらに悪いことに、完全な再設計を必要とする可能性があります。 PCBの寸法:PCBの全体的な寸法、エッジの許容差、および重要な特徴の位置は、正確に文書化されなければなりません。図面と実際の設計データとの間のいかなる逸脱も、製造中に重大な問題を引き起こす可能性があります。たとえば、寸法が正しくない場合、PCBが意図されたエンクロージャに適切に収まらなかったり、他のコンポーネントと正しく整列しなかったりする可能性があり、これはコストのかかる修正やスクラップボードにつながる可能性があります。 製造図面を提出する前に、すべての注記、寸法、および詳細を徹底的に確認し、最新の設計改訂との正確性と一致を確保してください。データセットが完全であることを確認し、回路層、ドリルファイル、はんだマスク、レジェンド、ネットリスト、アレイ指示、および図面が含まれ、正しい改訂と一致していることを確認してください。一般的な間違いとして、更新された回路層を使用しながら古いドリルファイルを提出することがあり、これは大幅な遅延を引き起こす可能性があります。一貫性と完全性を二重に確認することで、コストのかかる後退を避け、製造プロセスを合理化することができます。 例:NFP内のアニュラーリングとドリルから銅までの距離 特徴のサイズが品質、コスト、および納期に影響を与える一般的な例は、アニュラーリングのサイズとドリルから銅までの距離であり、特に 非機能パッド(NFP)に関連しています。柔軟な材料は硬いものよりも扱いが難しく、内層の登録を維持することがより困難になります。可能な限り、これらの課題に対応するために、フレックス層に大きなアニュラーリングを設計してください。複数の積層サイクルが必要な設計の場合、最初のサイクル後にアニュラーリングを増やすことで信頼性を向上させることができます。 さらに、トレースを配置する際には、非機能パッドを取り除く誘惑に抵抗してください。これらのパッドは、ドリルと導体の間の安全な後退距離として機能します。それらを取り除くと、PCBの信頼性が損なわれ、IPC設計ガイドラインに違反する可能性があります。 非機能パッドを取り除いた場合に何が起こり得るかの例をここに示します: 設計仕様:ドリルから銅まで.008インチ。 許容される接触:.005インチの環状リングがドリルから銅までを.003インチにすることを許可する前にエッチングバック。 記事を読む