製造技術者

In PCB design, a Manufacturing Engineer is a highly skilled professional who is responsible for designing, implementing, and reviewing procedures involved in the manufacturing process. They research automation techniques to maximize production efficiency or plan factory workflows to optimize how products are made across multiple departments. Manufacturing Engineers are experts at finding a balance between reducing costs, maximizing quality, and ensuring that procedures meet safety and environmental requirements.

Manufacturing Engineers in PCB design may also be referred to by other job titles, such as Manufacturing Assembly Engineer, Manufacturing Process Engineer, Manufacturing Manager, or CAM Engineer. These titles reflect the diverse range of skills and expertise required for success in this role, from process optimization and automation to supply chain management and regulatory compliance. Overall, Manufacturing Engineers play a critical role in the PCB design industry, ensuring that products are manufactured with the highest level of efficiency, quality, and safety.

Filter
見つかりました
Sort by
役割
ソフトウェア
フィルターをクリア
サプライチェーン最適化 Altium 365 BOM Portal:設計エンジニアとサプライチェーン最適化にとってのゲームチェンジャー 1 min Blog PCB設計者 購買・調達マネージャー 技術マネージャー +1 PCB設計者 PCB設計者 購買・調達マネージャー 購買・調達マネージャー 技術マネージャー 技術マネージャー 製造技術者 製造技術者 多くの設計チームでは、スプレッドシートなどの手動方法を使用してPCB(プリント基板)プロジェクトの部品表(BOM)を管理することが一般的な実践です。しかし、これらの伝統的なアプローチには、設計プロジェクトの成功に深刻な影響を及ぼす可能性のある問題が満ちています。BOM管理に手動ツールに依存することは、生産の遅延、コストの増加、さらには非準拠または時代遅れの製品をもたらす可能性がある非効率性、リスク、および誤解を導入します。 手動BOM管理の課題 人為的ミスに弱い: スプレッドシートは柔軟性がありますが、人為的ミスに非常に弱いです。部品番号の誤り、数量の誤り、または古いサプライヤー情報などの単純なミスが、生産ラインのさらに下流でコストのかかる混乱を引き起こす可能性があります。これらの エラーは、多くの場合、大量の時間とリソースが投資された後に遅れて発見されます。 リアルタイムデータの欠如: 手動のBOMはリアルタイムのサプライチェーンデータを統合していないため、エンジニアや調達チームはしばしば、部品の可用性、価格、およびコンプライアンスに関する古い情報を使用して作業しています。この乖離は、予期しない不足、リードタイムの延長、またはプロジェクトのスケジュールと予算を乱す予期せぬ価格の上昇を引き起こす可能性があります。 非効率なコミュニケーション:静的ファイルを通じて管理されるBOMは、電子メールやその他のアドホックな方法で共有されることが多く、バージョン管理の問題やチーム間の誤解を招くことがあります。これにより、関係者が古いBOMを基に作業を進めることがあり、設計と調達の段階 間での不一致のリスクが高まります。 コンプライアンス管理の難しさ:REACHやRoHSのような規制基準を全てのコンポーネントが満たしていることを確認するのは、時間がかかる手作業です。自動追跡がなければ、チームは定期的にコンポーネントのコンプライアンス状態を確認する必要があり、製品承認の遅延や再設計を必要とする非コンプライアント部品の使用リスクがあります。 コンポーネントライフサイクルの追跡ができない:急速に進化する電子市場では、コンポーネントがすぐに時代遅れになったり、終了(EOL)状態になることがあります。手動方法では、コンポーネントがもはや実用的でなくなったときに自動的に警告する機能が提供されません。これにより、最後の瞬間の再設計や生産の遅延が発生する可能性があります。 反応的な問題解決:供給チェーンのリスクを積極的に監視したり、コンポーネントの問題を早期に対処する能力がなければ、チームはしばしば反応的なモードに追い込まれます。これにより、急いで決定を下すことになり、調達コストが高くなり、エンジニアが 適切な代替品を見つけるために慌てたり、期限を守るためにプレミアムを支払ったりすることで、製品品質が損なわれる可能性があります。 これらの問題は、設計および製造プロセスにおいて大きな非効率を生み出します。市場投入までの時間が重要な業界において、手動でのBOM管理に関連するリスクは、競争上の優位性の喪失、生産コストの増加、および顧客の不満を招く可能性があります。 Altium 365 BOM Portal:PCB設計とサプライチェーン最適化のための包括的なソリューション Altium 365 記事を読む
BOMエラーを減らし、コンプライアンスを確保するためのヒント BOMエラーを減らし、コンプライアンスを確保するためのヒント 1 min Blog 技術マネージャー PCB設計者 購買・調達マネージャー +1 技術マネージャー 技術マネージャー PCB設計者 PCB設計者 購買・調達マネージャー 購買・調達マネージャー 製造技術者 製造技術者 PCB組み立てにおける遅延や追加コストの最も一般的な理由の一つは、BOM内の部品情報の誤りです。BOM内で誤りが生じる理由は多岐にわたり、単純な部品番号の間違いから環境適合性データの欠落やDNPとして部品をマークすることまで、その範囲は広がっています。このデータを省略することは、製造業者に新たな責任を生じさせ、調達チームによる誤った部品の発注につながる可能性があります。 スケジュールを守ることは、これらの誤りを早期に発見するプロセスとツールを持つことについてです。ここでは、そのようなプロセスを実装する方法と、設計ツールを使用してBOMの問題を発見する方法についてのヒントをいくつかご紹介します。 部品を注文する前にこれらのBOMエラーをキャッチしましょう BOMの誤りは設計者にとってコストがかかり、スケジュールの遅延を引き起こしますが、部品データに簡単な変更を加えることで避けることができます。重要なのは、PCBのレイアウトが完成するのを待つのではなく、設計プロセスの早い段階でこれらの誤りをキャッチすることです。 そこで、最も厄介(そしてコストがかかる)BOMの誤りと、それらを防ぐために取ることができる手順をいくつか紹介します。 部品番号とパッケージの不一致 問題: PCBレイアウトに配置されたパッケージとフットプリントが、BOM内の部品番号と一致しません。 この問題はほとんどの場合、PCB組み立て時に発見され、その時点であなたは本当に困難な状況に陥っています。PCBを廃棄してプロジェクトを最初からやり直しますか?それとも、既存のランドパターンに合う代替部品を探しますか? ここでの選択肢は多くないことがありますが、一般的な解決策は、同じ部品番号ファミリー内で異なるパッケージオプションを持つ別の部品を見つけることです。最悪の場合、カスタムのインターポーザPCBを製作するか、PCBを廃棄する必要があるかもしれません。 解決策は?設計者は、PCBが生産に入る前にこの問題を発見できる部品作成およびライブラリレビュープロセスを持つ必要があります。一部のサブスクリプションCAMツールは、DFM/DFAレビュー中にこの問題を半自動的なプロセスで捕捉することもできます。大企業では通常、ライブラリアンのタスクを担当する人がいますが、小規模な企業は信頼できる部品ソースに依存して、コンポーネントのCADデータを見つけるべきです。 DNP部品の誤った呼び出し 問題: DNP部品が、実装された部品と同じ行に記載されているか、まったく記載されていません。 理想的には、DNPパーツはBOMやピックアンドプレースファイルに現れるべきではありません。もしDNPパーツがBOMに現れた場合、組み立て業者はそれがピックアンドプレース機をプログラムする際に手動で取り除かれることを確認する必要があります。これは、組み立て業者がBOMの手動レビューを行い、提出物全体で一貫性があるかをチェックするときに起こります。 DNPパーツを適切に指定せずにBOMをエクスポートすると、または少なくともDNPパーツを指定する際に一貫したアプローチを使用しないと、物事は混乱します。例えば、下の画像では、黄色でハイライトされた単一行にDNPパーツがあります。次の行にもDNPパーツがリストされていますが、前のパーツと同じ列にはありません。組み立て業者は自然に何が起こっているのか疑問に思うでしょうし、このパーツがDNPとしてマークされるべきかを確認するためにプロジェクトの文書を参照する必要があります。 解決策は? Altium Designerの「バリアント」のような機能を使用して、バリアントを定義し、DNPパーツを呼び出すための回路図マークアップを適用し、これをBOMマネージャーのDNPコールアウトと照合します。部品にDNPマーキングの正しい存在をチェックするプロセスを実装できない限り、これを行わず、代わりに組み立てバリアントを使用してBOMとピックアンドプレースの配置を同時に制御します。 受動部品の未知の部品番号 記事を読む
設計から調達までのBOM管理 BOM管理:設計から調達までの説明 1 min Blog 購買・調達マネージャー 技術マネージャー プロダクトマネージャー +1 購買・調達マネージャー 購買・調達マネージャー 技術マネージャー 技術マネージャー プロダクトマネージャー プロダクトマネージャー 製造技術者 製造技術者 部品表(BOM)は、製品を製造するために必要なすべての部品、組み立て品、およびサブアセンブリの包括的なリストです。これは、伝統的に分断されていた設計と生産チームの間のギャップを埋め、製品ライフサイクル全体を通じて正確性、効率性、およびコスト効果を維持するのに役立つ、絶対に不可欠な文書です。 BOMの重要性を理解する それを念頭に置くと、BOMが製品開発ライフサイクルで重要な役割を果たすことは明らかですが、実際にどのチームに影響を与え、なぜ影響を与えるのでしょうか? 調達: 必要な部品とサプライヤーの特定。 製造: 組み立てプロセスの指導と正しい部品の使用の確保。 品質管理: 製品の整合性と仕様への準拠の検証。 コスト計算: 生産コストの見積もりと予算の管理。 これらのチームそれぞれにとって、十分に管理されたBOMは、操作の効率化、エラーの削減、および全体的な製品品質の向上を助けます—これらはすべて、製品が期待を超え、要求の厳しい消費者に迅速に市場に出る必要がある時点で、ますます重要な要素です。 部品選択と仕様 最終製品の品質は、その設計に使用されるコンポーネントの良さによってのみ決まります。それらを選択する際には、次の要因を考慮することを忘れないでください。 コスト:異なるオプションの コスト効果を評価し、バルク割引、リードタイム、潜在的な隠れたコストなどの要因を考慮します。 入手可能性:特に重要な部品や需要がピークに達する期間に、コンポーネントを確実かつ迅速に調達できることを確認します。 性能:必要な仕様を満たすかそれを超えるコンポーネントを選択し、消費電力、動作温度範囲、信頼性などの要因を考慮します。 信頼性:特にダウンタイムが重大な結果を招く可能性がある重要なアプリケーションにおいて、コンポーネントの実績と故障までの平均時間(MTBF)を考慮します。 互換性:ピン配置、電力要件、信号の整合性など、設計内の他のコンポーネントとの互換性を確認します。 記事を読む
自動車とAI、二つの産業がコンデンサーブームを牽引 自動車とAI:コンデンサブームを加速する2つの産業 1 min Blog 購買・調達マネージャー 製造技術者 購買・調達マネージャー 購買・調達マネージャー 製造技術者 製造技術者 新興技術が消費者の生活のあらゆる側面と、多くのビジネス機能を席巻しています。 すべてがデジタル化する中で、車やコンピュータが複雑な機能を可能にするために安全で効率的な部品に依存しているため、高出力アプリケーション用のコンデンサの需要が急速に増加しています。 人工知能(AI)の台頭は、データセンター運用やエネルギー管理を含むさまざまなセクターの電力ニーズに影響を与えています。同じ可能性が現在、特に電気自動車(EV)市場が成長し、企業が革新を図るためにインテリジェントシステムに依存するにつれて、自動車セクターにも存在しています。 AIの結果としてのコンデンサ需要 AIの潜在的な使用例を考えてみてください。数年後には、それが実現しているでしょう。私たちはこれを認識しており、すべての産業で新技術の急速なスケーラビリティは、将来のグローバル経済を運営するための定番とすでになっています。これは、食品が生産される方法、移動ネットワークが管理される方法、およびビジネスが接続性を活用する方法に影響を与えます。 キャパシタは、AI駆動コンピューティングの電力分配の中核コンポーネントであり、最も一般的に使用される部品は、超高電力密度と高速伝送速度が特徴です。この能力がなければ、AIはリアルタイムデータ分析を実行し、その結果としてのアクションを行うことができません。 しかし、2023年にはキャパシタセグメントが反発し、特に自動車業界が電子機器やインテリジェントサブシステムを現代の車に統合するために一貫して使用しているセラミックタイプ、つまり 多層セラミックキャパシタ(MLCCs)が注目されました。他の産業においても、AIの使用が顕著に増加しており、これが改善された電力交換のニーズを高めています。その産業には次のようなものがあります: 農業 - AIと機械学習(ML)は、作物監視、土壌管理、害虫および病気の管理などのプロセスを自動化することで、作物生産においてより大きな成果をもたらしています。 医療 - 病気の識別とケアのパーソナライゼーションにAIを活用すること、および医療提供を合理化するためのいくつかの組織的な実践。 エネルギーと公共事業 - エネルギーの最も効率的な生産と消費を保証するためのリアルタイム監視と分析の実施。 製造業と物流 - 製造プロセスをリーンにし、不良品の可能性を最小限に抑える。 記事を読む
EUのデジタルコンパスイニシアチブ EUのデジタルコンパスイニシアチブの概要 1 min Blog 購買・調達マネージャー 製造技術者 購買・調達マネージャー 購買・調達マネージャー 製造技術者 製造技術者 世界は変わりつつあり、デジタル技術は商業の自動化、効率化、最適化から、医療や基本サービスの簡素化に至るまで、あらゆる産業の変革戦略に組み込まれています。 国や企業によってデジタル変革を統合するための意識的な努力が払われており、その最終目標は利益の追求または実践の改善です。言うまでもなく、技術の進化がなければ、グローバリゼーションは不可能であり、医療問題の商業的に実行可能な戦略の開発、気候変動との戦い、発展途上国への重要サービスの提供の可能性もありません。 技術に関する議論がなされることはなく、現在の10年間はこれまで以上に重要です。これは、EUとその「デジタルの10年」によってさらに強調されており、これは加盟国におけるデジタル変革の包括的な目標を設定しています。デジタルコンパスは、ヨーロッパ経済と国家サービスの近代化の手段である一方で、その影響はプリント基板(PCB)市場の主要プレイヤーの間で感じられるかもしれません。 EUデジタルの10年:2030年までの技術革命に向けて 「デジタルの10年」と「デジタルコンパス」を区別することが重要です。10年は2030年に終わりますが、その後の10年間で変化の速度はさらに加速するでしょう。 主要な柱には、スキル、商業、インフラ、公共サービスが含まれます。 ITスキル:デジタルスキルの重要性は今後数年でさらに高まるため、EUは労働力内の技術的に熟練した従業員の割合を引き上げるために努力を尽くしています。これは、技術プロバイダーと協力してタレントプールをアップスキルするとともに、将来の世代の教育者としてのさらなる投入を奨励することを意味します。 ビジネス変革:組織は、将来の商業的成功が新技術の採用能力に依存するという事実を大いに受け入れていますが、それを実現するためのインフラ、サービス、サポートが整っていなければなりません。 デジタルインフラ:インフラの整備状況に基づいて風景は進化し、EUがこの分野での開発を一貫して推進していることに驚くことはありません。ますます多くの国が世界的に有名なビジネスの子会社を抱えるにつれて、物理的なネットワークは、より大きな接続性を求める彼らの需要と一致しなければなりません。 公共サービス:セキュリティと持続可能性は、デジタルディケードにおける革新のための2つの重要な分野です。公共サービスへの圧力は、ケアと効率性に大きな穴を残し、それは技術で埋められるべきです。例えば、キーカード、電子機器、およびヘルスケアを簡素化するためのその他のデジタル補助具などです。 EUデジタルコンパスイニシアチブ:デジタル変革戦略 デジタルディケードは、5Gおよび接続性を向上させるすべての基盤となる革新を中心に展開されています。これを実現するには明確な戦略が必要です—それがデジタルコンパスです。このイニシアチブは、経済および社会の進化のためのロードマップと、ヨーロッパを完全にデジタル化された時代へと導くために必要な行動を包含しています。 欧州委員会は、 デジタル経済および社会指数(DESI)を使用してこれを測定します—ヨーロッパのデジタル変革の集合的指標および測定値です。 世界貿易においてこれほど影響力のある組織である欧州委員会が設定した目標は、国と国との貿易、EU非加盟国を含む、デジタル製品およびソリューションへの需要が高まる中で、全世界のすべての産業に影響を与えるでしょう。プリント基板(PCB)分野の企業にとっては、加盟国全体の変化をナビゲートするために、デジタルコンパスの詳細を理解することが不可欠です。 エネルギーセクター 欧州の国々は、過去数年間、世界的なパンデミック、隣国との紛争、クリーンエネルギーへの需要とのバランスをとることに苦労してきました。このような混乱の影響を受け、EUは 多様化の成功を保証するために、進化するエネルギーセクターに技術を投入しています。 ロシア・ウクライナ危機が発生して以来、ヨーロッパは可能な限りエネルギー生産を地元化することを目指し、その一環としてHorizon 2020プログラムを通じて10億ユーロをデータソリューションに投入しています。しかし、これを実現するためには、国々は現代のエネルギーインフラを運用するために、接続性とデジタルハードウェアの両方にますます依存しています。 記事を読む
インド半導体ミッション インド半導体ミッション:協力、能力、そして有望な未来 1 min Blog 購買・調達マネージャー 製造技術者 購買・調達マネージャー 購買・調達マネージャー 製造技術者 製造技術者 インドの半導体セクターは、強固な基盤を築くことを目指した重要なパートナーシップと大規模な投資によって、急速に力をつけています。戦略的なコラボレーションと大きな投資により、堅牢なエコシステムを確立することを目指しています。最近、ナレンドラ・モディ首相とシンガポールのローレンス・ウォン首相との間で合意された協定は、半導体分野でのグローバルリーダーになることへの国の増大する献身を強調しています。 主要発表:インド-シンガポールパートナーシップおよびその他の重要な投資 シンガポール訪問中、モディ首相はウォン首相と共に、AEMホールディングスを含むシンガポールの先進的な半導体施設を探索しました。この訪問は、シンガポールの専門知識を共有し、 インドの地元製造能力を強化することに焦点を当て、インドの半導体セクターの成長を促進する合意につながりました。このコラボレーションは、外国からの投資を引き付け、そのエンジニアリングのタレントプールを強化するインドの戦略の一部です。 同時に、タタ・エレクトロニクス・プライベート・リミテッドのような企業からの大規模な投資がインドで見られています。この企業は、台湾のパワーチップ・セミコンダクター・マニュファクチャリング・コープ(PSMC)との提携のもと、グジャラート州ドロレラに30億ドルの 半導体ファブを設立しており、月間約40,000から60,000枚のウェハーの生産能力に達することが期待されています。この追加は、インドの国内製造能力を大幅に向上させることになります。タタ・グループはまた、アッサム州政府との間で、ジャギロードに32億5000万ドルの半導体ユニットを設立するための賃貸契約を締結しました。これらの動きは、ハイテク製造を支援し、インドの半導体成長において重要な役割を果たすという、より広範な国家戦略と一致しています。 インドの半導体拡大にさらに貢献する形で、アダニ・グループとイスラエルのパートナーであるTower Semiconductorは、マハラシュトラ州にチップ製造工場を建設するために100億ドルを投資することを約束しました。この工場の生産能力は、月に約30,000から50,000枚のウェハーに達すると予測されています。この工場は、特に先進的な半導体技術の生産を拡大する上で、インドにとって重要な役割を果たすでしょう。このプロジェクトには、第一段階で70億ドル、第二段階で30億ドルの段階的な投資が含まれます。また、Micronはインド半導体ミッション(ISM)の下で27億5000万ドルの投資を約束しており、このセクターへの最大の投資の一つとなっています。Micronのインド半導体ミッションにおける投資は、特にメモリチップに焦点を当て、国内生産に月に約20,000から30,000枚のウェハーを追加することを目指しています。 他の主要な投資には、CGパワーおよびインダストリアルソリューションズの合弁事業がグジャラート州サナンドに半導体施設を設立するために9億1500万ドルを投資し、約10,000から15,000枚のウェハーを月間で生産する予定のプロジェクトや、同じくサナンドで承認されたカインズセミコンプライベートリミテッドの3億9700万ドルのユニットが月間約5,000から7,000枚のウェハーを追加することが期待されています。これらの施設は、インドの半導体生産能力に大きく貢献し、国内外の需要の増加に対応する国の能力を高めることが予想されます。 セミコンインディアイベントと業界の楽観主義 モディ首相は近くノイダでセミコンインディアイベントを開催し、半導体セクターがインドの経済的将来にとって重要であることを反映します。SEMIのアジット・マノーチャ会長は、「インドはグローバルな半導体ハブになる準備ができている」と述べ、業界内の楽観主義を示しています。このイベントは、強力な半導体エコシステムを確立するための政府の政策と民間セクターの努力との間の強い連携を強調しています。 FlexAIのスレシュ・スブラマニャムやL&Tセミコンダクターのサンジャイ・グプタのような専門家が、自動車や産業用電子機器などの分野に焦点を当てた半導体パッケージングや製品開発の専門知識を活かすためにインドに戻ってきています。これは、他者のためにチップを設計することから、高まる地元需要に応える主要生産国になるまで、インドの半導体サプライチェーンでの役割が変化していることを示しています。 成長する才能と国産イノベーション インドの半導体産業での台頭は、単にチップの製造についてだけではありません。Ola Krutrimのような企業は、外国技術への依存を減らすことを目指して、国産のAIチップを開発しています。Ola Krutrimのロードマップには、人工知能用のBodhiやエッジコンピューティング用のOjasなどのAIチップが含まれており、2026年までに最初のシリコンを提供する計画です。これらのイノベーションは、技術的独立を達成するためのインドの野心を示しています。 一方、ルネサスインディアはエンジニアリングチームを拡大し、大学やスタートアップとの協力を深めています。この才能開発とイノベーションへの焦点は、産業の長期的な持続可能性に不可欠であり、インドを魅力的な半導体の目的地として強化しています。 インドの半導体成長におけるリショアリングと地域化の役割 インドの急速に成長している半導体セクターは、 リショアリングと地域化へのグローバルな傾向の主要な例です。多くの産業が、海外のサプライヤーに大きく依存することで、長いリードタイム、品質管理の問題、およびサプライチェーンの混乱に直面しています。2021年のスエズ運河の封鎖のような出来事は、これらの脆弱性を強調し、企業により近い地域での生産への地域化を促しました。 記事を読む
サプライチェーンのリショアリング リショアリングが始まると、サプライチェーンはどのように適応しますか? 1 min Blog 購買・調達マネージャー 製造技術者 購買・調達マネージャー 購買・調達マネージャー 製造技術者 製造技術者 近年、製造業や生産活動を本国に戻すことを目指す企業が増える中で、リショアリングの概念が大きな注目を集めています。リショアリング、またはオンショアリング、バックショアリングとも呼ばれるこの動きは、製品の生産と製造を企業の本国に戻すことを指します。この傾向は、輸送費と生産コストの削減、品質管理の向上、市場の要求に迅速に対応する願望など、さまざまな要因によって推進されています。さらに、リショアリングは雇用創出と国内経済の活性化を目指しています。 リショアリングを理解する リショアリングは、労働力と製造コストが低い海外への生産移転であるオフショアリングの反対です。実際に、リショアリングは製造業が企業の本国に戻ることを意味します。 オフショアリングが数十年にわたって頻繁に行われてきた一方で、リショアリングはグローバルサプライチェーンに関連する課題やリスクへの戦略的な対応として登場しました。COVID-19パンデミック、地政学的な緊張、そして輸送コストの増加は、海外生産に大きく依存することの脆弱性を浮き彫りにしました。 リショアリングの事実と普及 リショアリングは近年、顕著なトレンドとなっており、多くの企業が生産を国内に戻すことの利点を認識しています。 リショアリング・イニシアティブによると、米国でのリショアリングおよび外国直接投資(FDI)による雇用の発表は2022年に記録的な高さに達し、36万4000件以上が発表され、2023年にはさらに28万7000件が発表されました。このトレンドは、企業がサプライチェーンのレジリエンスと持続可能性を優先するにつれて続くと予想されます(図1)。 業界の混合 リショアリングは、自動車、電子機器、医療機器、消費財など、さまざまな業界で広がっています。自動車業界では、海外サプライヤーへの依存を減らし、サプライチェーンの可視性を向上させるために、リショアリングに向けた顕著なシフトが見られます。 自動車セクターの大部分はすでに国内調達を行っています。2024年時点で、米国の自動車セクターの66%が製品または原材料の少なくとも半分を国内で調達し、80%がサービスの少なくとも半分を国内で調達しています。 リショアリングに向けたトレンドは今後も成長が期待されます。調査によると、自動車業界の回答者の44%が「非常に可能性が高い」または「極めて可能性が高い」と回答し、今後数ヶ月以内に新たな北米の製品や原材料のサプライヤーを導入することを示しています。 インフレ削減法(IRA)やCHIPS法のような政策は、リショアリング努力を大幅に後押ししています。これらの政策は、以前は輸入に大きく依存していた電気自動車(EV)のバッテリーや半導体などのセクターにおいて、国内製造に対して大幅なインセンティブを提供しています。 地理的なミックス リショアリングはアメリカ合衆国で最も顕著ですが、イギリスやドイツなど他の国々でも国内製造の復活が見られます。これらの国々は、リショアリングを活用して経済を強化し、雇用を創出し、サプライチェーンの回復力を高めています。 イギリスでは、国内製造が復活しています。国際貿易を複雑にするブレグジットや、サプライチェーンの回復力を高めたいという願望がリショアリング努力を推進しています。イギリス政府は、この傾向を支援する 政策を実施しています。 強力な製造業セクターで知られるドイツは、リショアリングを活用して産業基盤を維持しています。この国は、サプライチェーンの安定を確保し、先進的な製造能力を活かすために、生産を国内に戻すことに焦点を当てています。 リショアリングに成功するための適応ステップ リショアリングに適応するには、戦略的なアプローチと慎重な計画が必要です。ここに、企業がこの移行を成功させるためのステップバイステップガイドを紹介します(図2): ステップ1 記事を読む