エンジニアリングニュース

Filter
0 SelectedClear ×
Clear
GaN MMICパワーアンプ市場の展望とアプリケーション Engineering News Thought Leadership GaN MMICパワーアンプ市場の展望とアプリケーション 次に購入するスマートフォンには、無線通信用のGaN MMICパワーアンプが搭載される可能性が高いです。かつて学術界に限定されていたものが、現在では急速に商業化されています。これらの開発はスマートフォンに限られているわけではありませんが、成長しているRFコンポーネント市場の大きな部分を占めると予想されています。自動車、航空宇宙、さらにはロボティクスにおける高周波レーダーが、GaN MMICのさらなる採用を大きく推進すると期待されています。高熱伝導率と耐圧電圧を必要とする関連分野として、GaN-SiCおよび4H-SiCアンプは、再生可能エネルギー部門での豊富な使用が期待されています。 市場データが証拠です。 Global mobile Suppliers Association (GSA)の最新の市場データによると、全ての5Gデバイスの67%以上がsub-6 GHzスペクトラムバンドをサポートしており、34%以上がmmWave無線通信をサポートしています。発表されたデバイスの27%以上がmmWaveとsub-6 GHz無線通信の両方をサポートしています。より多くのデバイスがmmWave範囲に進出し、これらの製品の冷却方法がより革新的になるにつれて、 最近の推定では、2023年までに全世界のアンプ市場の価値が16億ドルから30億ドルになるとされています。GaNは、この総市場シェアの43%を占めると予測されています。 これらのコンポーネントを取り巻く興奮が高まる中、RF、モバイル、レーダー、または電力変換の設計者であることは良い時期です。イノベーションを求めているなら、次に成長が見込まれる場所と、これらのアプリケーションにおいてGaN MMICがなぜ重要であるかを読み進めてください。 GaN MMICパワーアンプに対する興奮の理由は? GaNは、GaAsやバルクシリコンと並んで、高電子移動度トランジスタ(HEMT)に理想的な半導体です。RFアプリケーション用のGaNとSiやGaAsとの重要な違いは、それらの材料特性を比較すると明らかになります。以下の表に簡単な比較を示します。 特性 Si GaAs
PCB 対 マルチチップモジュール、チップレット、シリコン・インターコネクト・ファブリック Engineering News PCB 対 マルチチップモジュール、チップレット、シリコン・インターコネクト・ファブリック(2023年更新) 2019年9月号のIEEE Spectrum誌の記事では、マルチチップモジュールや高度なパッケージ上でチップレットを接続する方法であるシリコンインターコネクトファブリックが、特にマザーボードにおいて、PCBや大型のSoCを多くのアプリケーションで不要にすると主張されました。 しかし2023年になっても、まだPCBを手放した人はいないようです。PCBへの需要は以前と変わらず強く、二桁のCAGRで成長すると予測されています。これは、 UHDIボードや 基板のようなPCBなど、高度なタイプのPCBの成長が期待されているにもかかわらずです。 その2019年のIEEE Spectrumの記事は、過去数十年にわたって少なくとも3回目の「PCBの終焉」が主張されたものでした。マルチチップモジュールは1970年代のIBMのバブルメモリにさかのぼりますが、半導体ダイにボンディングバンプアウトをモジュールに組み込むためのフットプリントを構築できる限り、標準のPCB設計ソフトウェアを使用してこれらを設計することもできます。流行語を取り除き、マルチチップモジュールを主流に導入する際の課題を分析すると、PCBと集積回路の将来の関係がどのように見えるかがより明確になります。 高度なパッケージ、チップレット、シリコンインターコネクトファブリック アメリカとヨーロッパの電子製造の話題が先進的なパッケージングと地元の半導体生産に移行している今、より多くの企業がチップ設計業務を内製化しています。これは、パッケージングがこれらの設計チームの領域になることを意味し、PCB設計者は異種統合チップやモジュールを含む先進的なパッケージングレイアウトを解決するスキルを持つグループです。 シリコンインターコネクトファブリックは、超大型システムのための先進パッケージ内で異種統合をサポートするインターコネクトプラットフォームとして意図されていました。このパッケージング方法では、未パッケージのダイが非常に細かい垂直インターコネクトピッチ(2から10ミクロン)でSiウェハーに直接取り付けられます。ダイ間の間隔は100ミクロンを目指し、ダイ間の非常に短いインターコネクトを実現します。このパッケージは、ダイを垂直に積み重ねて単一のモジュールにする3D統合もサポートすることを意図しています。 シリコンインターコネクトファブリックの構造。[出典: UCLA CHIPS] このファブリックは、従来のインターポーザ、パッケージ、およびPCBを置き換えることを目的としています。偏見を持っていると言われるかもしれませんが、現在のコンポーネント製造および配布の構造を考えると、このようなパッケージング方法がPCBを置き換えるとは思えません。これは、インターポーザやパッケージ基板に配置できる構造のように見えますが、PCBの卸売りの代替品にはならないでしょう。この構造は、本質的にシリコンウェハ上での2.5D統合または3D統合を可能にするため、このように言います。 設計階層でパッケージングはどこまで到達する必要があり、これらのデバイスが電子機器を構築する標準的な方法としてPCBをいつか置き換えることがあるのでしょうか?現実には、異種コンポーネントを相互接続するために使用されるパッケージング方法は、最高レベルのパッケージングソリューションとしてPCBを置き換えることを意図していません。PCBのオフ・ザ・シェルフコンポーネントによって提供されるモジュラリティは、エンジニアが必要とする重要な価値と柔軟性を提供します。オフ・ザ・シェルフの集積回路がチップレットとしても利用可能になるまで、シリコンインターコネクトファブリックのような技術はPCBを完全に置き換える希望がありません。 私がパッケージとプリント基板を完全に新しいインターコネクトアーキテクチャに置き換えることについて懐疑的であったにもかかわらず、シリコンインターコネクトファブリックベースのシステムに関する追加研究が行われています。パッケージング技術として、シリコンインターコネクトファブリックベースのシステムは、従来のパッケージングや高度なPCBと同様の課題に直面しています。特に、 電力供給、電力安定性、およびファブリックに組み込まれたキャパシタンスの問題があります。これらのトピックに関する最近の論文を以下に示します。 Safari, Yousef, Anja
IPCが高性能製品のマイクロビア信頼性に関して警告 Engineering News IPCが高性能製品のマイクロビア信頼性に関して警告 皆さんが、2019年3月6日にIPCから発表された、高プロファイルHDIボードの現場および潜在的な故障に関する警告のプレスリリースをすでに読まれたことを願っています。もし読まれていない場合、完全なプレスリリースは I-Connect 007で入手可能です。[1] 皆さんが目にされたかもしれないのは、IPCがこれから出るIPC-6012E、 リジッドプリントボードの資格認定と性能仕様に含まれる警告文です: 「過去数年間にわたり、製造後のマイクロビア故障の例が多数ありました。通常、これらの故障はリフロー中に発生しますが、室温では検出不可能(潜在的)であることが多いです。組み立てプロセスが進むにつれて、故障が現れると、それがより高価になります。製品がサービスに投入された後にまで検出されない場合、それははるかに大きなコストリスクとなり、さらに重要なことに、安全リスクをもたらす可能性があります。」 パニックにならないでください! この警告の背景を説明させてください。 ここ数年、いくつかのOEMは、最善の利用可能な受入検査およびテスト方法論でスクリーニングされたにもかかわらず、彼らの高度なHDI多層基板で潜在的な欠陥を経験しました。この欠陥は、以下で観察された故障を引き起こしました: リフロー後のインサーキットテスト 「ボックスレベル」組み立て環境のストレススクリーニング(ESS)中 保管から取り出された時 サービス中(エンドカスタマーが使用中の製品) これらのOEMによる多大な努力と調査、およびD-32熱ストレステスト方法諮問委員会との調整を経て、IPCは新しい熱ストレステスト方法(IPC-TM-650、方法2.6.27A)と熱衝撃テスト方法(IPC-TM-650、方法2.6.7.2)を発行しました。方法2.6.27では、テスト車両またはクーポンを通常のはんだペーストリフロープロファイルに従ってピーク温度230度Cまたは260度Cに達するようにし、4線式抵抗測定ユニットに接続した状態で6回の完全なリフロープロファイルを実施し、抵抗の増加が5%を超えないようにします。テストクーポン内のデイジーチェーンは、実際の回路で使用される特徴で構成する必要があります。 これにより、これらのOEMは潜在的なマイクロビアの故障を検出し、可能な欠陥の逃避から自身を守ることができました。しかし、この潜在的なHDI故障の根本原因を見つけることは困難でした。そこで、2018年初頭にIPCは、Michael Caranoの監督のもと、業界の専門家からなる選抜グループを組織し、この状況を調査することにしました。2018年後半には、このグループはIPC V-TSL-MVIA 微小ビア故障技術ソリューション小委員会と名付けられました。私はこのグループの創設メンバーです。しかし、強調しておきたいのは、 過去1年間、私たちは会合を重ね、テストデータ、断面観察、実験結果を検討しました。これが私たちが知っていることです: 欠陥は、マイクロビアとその下の銅層またはその下の別のマイクロビアとの間の金属界面での亀裂として現れます。(図1を参照)
AltiumLive 2017: 年次PCB設計サミット OnTrack Newsletters Engineering News AltiumLive 2017: 年次PCB設計サミット このPCB設計カンファレンスは、その全体が、設計者の知識と実践の向上を目的としたトレーニングコンテンツに特化しています。このようなPCB設計カンファレンスはほとんど見られないため、Altiumは完全に設計者のための、専門的なPCB設計者の主導による、新しいPCBカンファレンスを作り上げることを決意しました。 この秋、 AltiumLive 2017: 年次PCB設計サミットが、北米および欧州で開催されます。弊社は2日間にわたって、他では見られないようなPCB設計カンファレンスを主催します。Lee Ritchey、Happy Holden、NXPのDan Beekerなど、業界の有名人が講演を行います。業界の象徴的な企業の熟練した設計者から学ぶこともできます。そして、おそらく最高なのは、同僚や同業のAltium Designerユーザーから、どのようにして革新的な設計手法や実践方法を発見したかを聞き、自分の設計業務を次の段階に発展させるために役立てられることでしょう。更に、プロフェッショナルな設計者にとって最も困難で問題の多い分野のいくつかについて、設計のベストプラクティスを紹介する、5つの詳細なプロフェッショナル開発コースも実施されます。 ● 高度な配線の効果的な方法 ● 複数基板の設計課題の克服による次世代電子機器の作成 ● 正しいPCB製造に必要なドキュメントの作成 ● 電源供給ネットワークの早期解析の採用 ● Altium Designer
Altium Need Help?