PCB設計者

PCB設計者のためのリソースと情報をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
自動ピックアンドプレース機は、汎用回路基板に迅速にコンポーネントを取り付けます。電子および回路基板製造 PCBデザイナーが良い顧客になる方法:製造の観点から 1 min Blog PCB設計者 電気技術者 PCB設計者 PCB設計者 電気技術者 電気技術者 製造サービス会社との強力なパートナーシップは、生産プロセスがスムーズに進むか、コストのかかる遅延が発生するかの違いを意味することがあります。製造者の視点からすると、顧客の特定の慣行が、デザイナーを単なるクライアントから価値あるパートナーへと昇格させることもあれば、見積もりのリクエストが列の後ろに押しやられる原因となることもあります。 PCBデザイナーが最高の顧客となる方法についてのガイドです。これにより、高いレベルのサービスを確保し、製造業者との強固な関係を育むことができます。 製造業者のプロセスと能力を理解する 優れた顧客になるための基本的なステップは、製造業者のプロセスと能力を理解することです。時には、製造業者がどのように運営しているかをより深く理解するために、製造プロセスを経験する必要があります。各製造業者には独自の強みと限界があり、設計要件をこれらと合わせることで、多くの潜在的な問題を防ぐことができます。 設計プロセスの早い段階で製造業者との議論を開始してください。単純なボード以外のものを製造する場合は、製造業者の能力と材料の選択肢を決定する必要があります。設計チームは、メールを送るだけでこの情報をすぐに入手できます。この情報は、製造業者のより広範な DFMガイドラインの重要なサブセットです。これらのガイドラインに準拠した設計は、製造が容易であり、エラーや遅延のリスクを減らすことができます。 明確で完全なドキュメントを提供する 製造業者は、見積もりを提供し、生産を進めるために、ビルド要件に関する完全なドキュメントを必要とします。製造業者には、標準のビルドファイルセットが必要であり、それにはGerberファイル、ODB++、またはIPC-2581のエクスポートが含まれます。エクスポートには、必要なPCBレイヤー(銅、シルクスクリーン、はんだマスク、ドリル図面)をすべて含めてください。 明確で正確なドキュメントは、確認のための行き来を最小限に抑え、プロセスを加速させます。残念ながら、Gerberファイルには、製造を完全に見積もり、進行するために必要なドキュメントのごく一部しか含まれていません。必要な他の重要な情報は以下の通りです: 注記付きの製造図面 ドリル表を示すドリル図面 ドリル図面に一致するNCドリルデータ ボードの形状が特殊な場合は、機械図面が必要になることがあります 完全な 製造ノートを含む製造図面を省略すると( リジッドフレックスPCB製造ノートに関するこのリソースも参照)、製造業者がこれを要求するか、PCB内ですべての製造詳細を指定するよう求められます。 Draftsmanでの完全な製造図面ドキュメント。 完全なドリル表とそれに対応するデータは、製造業者が今後のビルドの処理ニーズを判断するのに非常に役立ちます。NCドリルデータからドリル表を再構築するのではなく、製造ドキュメントパッケージにドリル表とドリル図面を含めることで、製造業者は使用されているドリル、PCB内のドリルヒット数、許容されるドリルサイズの許容差、関与するレイヤーペアを正確に把握できます。 Draftsmanドキュメントでドリルテーブルを生成する方法について、 Altiumドキュメントで詳しく学びましょう。 記事を読む
PIMX8 プロジェクト - 第6章 Pi.MX8 プロジェクト - ボードレイアウト パート4 1 min Altium Designer Projects PCB設計者 PCB設計者 PCB設計者 Pi.MX8コンピュートモジュールSoMプロジェクトの新しいインストールメントへようこそ!このアップデートでは、PCB設計に最後の仕上げを行い、プロトタイプの生産準備を整えます。 前回の 記事では、信号層のルーティングを完了しました。これはPi.MX8モジュールのPCBレイアウトで最も時間がかかる部分でした。しかし、同じくらい注意を要する2つのタスクがまだ残っています。電源プレーンのルーティングと信号遅延の調整です。 電源プレーン まず、電源プレーンから始めましょう。私は通常、遅延調整を最後のステップとして行うのが好きです。なぜなら、長さ調整のために必要なメアンダーがボード上の残りのスペースをしばしば埋め尽くすからです。例えば、電源ネットをルーティングする際に追加のVIAを配置する必要がある場合(時には必要になることがあります)、必要なスペースを作るために長さ調整プリミティブを調整する必要が出てくるかもしれません。最後に長さ調整プリミティブで残りのスペースを埋めることで、追加の作業を避けることができます。 利用可能な電源プレーン層 レイヤースタックを見ると、2つの専用の電源プレーン層が利用可能であることがわかります。これらの層は、薄いプリプレグによって隣接するグラウンド層から分離されています。このスタッキングは低インダクタンスプレーンの容量を増加させ、高周波でのPDNインピーダンスを減少させるのに役立ちます。 まず、高電流の電源レールを配線しましょう。この場合、これらはi.MX8 SoCとDRAMコントローラーのコアおよびメモリレール、そしてLPDDR4 ICです。 SoCのPMICコアおよびメモリ供給 VCC_ARMおよびVCC_SOCレールはリモートセンシングを使用しており、これはバックコンバーターのフィードバックノードがMIC近くの出力コンデンサにルーティングされるのではなく、i.MX8の電源パッドにルーティングされることを意味します。これは、電源プレーンまたはポリゴンを通る電圧降下を補償するためです。これらのレールの電流が比較的高く、PMICがこれらの電圧を正確に調整する必要があるため、負荷で直接「電圧を測定」することが重要です。次の図は、電源ポリゴンを通る電圧降下を示しています: 電源ポリゴンを通る電圧降下 VCC_ARMレールのパワーポリゴンは、レイヤー6にルーティングされています。ポリゴンのアウトラインに近くルーティングされたトレースは、リモートセンシング信号です。理想的には、リターンパス電流によって導入される寄生効果を補償し、フィードバックをノイズに対してより耐性を持たせるために、差動電圧を測定したいところですが、私たちの場合、これは必要ありません。参照設計の推奨に従います。 VCC_SOCポリゴン フィードバックトレースは、SoCのピンの近くで「ネットタイ」を使用して、フィードバックネットをパワーネットに接続します。ネットタイを使用しない場合、フィードバックトレースとパワーポリゴンの間のクリーンな分離を手動で確保する必要があります。このアプローチはエラーが発生しやすいです。ネットタイは、両端に小さなパッドを持つ短いトレースセグメントからなるフットプリントです。コンポーネントタイプをネットタイに設定することで、Altium Designerはこのコンポーネントに対してショートサーキットエラーを生成しません。 VCC_ARMポリゴンとDRAMパワーレールは、レイヤー5で同様の方法でルーティングされています。 VCC_ARMが強調表示され、DRAMパワーレールが紫色で表示されています 残りの電源レールは、レイヤー5と6に分配されています。1.8Vおよび3.3Vのシステム電源ポリゴンは、これらのレールに接続されている多くのコンポーネントがボード全体に分散しているため、ボード全体にわたって広がっています。 記事を読む
PCIeエッジカードのためのPCBデザインとピン配置 PCIeエッジカードのためのPCBデザインとピン配置 4 min Blog PCB設計者 PCB設計者 PCB設計者 標準的なデスクトップコンピュータや組み込みコンピュータで最も一般的なアドインカードはPCIeカードです。PCIeアドインカードは複数のフォームファクターがあり、エッジスロットコネクタを使用して、マザーボードに対して垂直または直角に取り付けられます。また、M.2コネクタに接続するSSDやモジュールなど、異なるタイプのPCIeデバイスもあります。 この記事では、デスクトップコンピューターやサーバーに一般的に見られる標準的な垂直エッジコネクタを使用するPCIeアドインカードの機械的および電気的要件について説明します。PCIeアドインカードには、エッジコネクタ内にしっかりと収まるために従う必要があるカードの形状とサイズに関する特定の機械的仕様があります。 残念ながら、これらのエッジコネクタの機械的仕様はPCIe標準の中に埋もれています。設計者はしばしば、既存のカードのアウトラインを逆設計してPCIeカードのPCBで使用する必要があります。このブログでは、プロジェクトに使用できるPCIeカードのテンプレートを作成しました。このテンプレートは、カードの機械的キーイングとピン要件を示しているため、良い出発点ですが、必要な正確なPCB寸法に合わせてアウトラインを調整できます。 PCIeカードの機械的および電気的要件 PCIeアドインカードは、機械的な制約を課し、信号の整合性を決定するPCIeスロットコネクタを使用します。これらのカードで使用されるPCIeスロットコネクタに関するいくつかの重要な考慮事項を以下に示します: レーンの標準化:スロットコネクタは、特定の数のレーン(1x、4x、8x、16x、およびあまり一般的ではない32x)に対して標準化されています。 世代の互換性:スロットコネクタは、特定のPCIe世代に対して評価され、下位互換性があります。 コンポーネントタイプ:スロットコネクタは、スルーホールコンポーネントまたはSMDコンポーネントであることができますが、新しい世代のコネクタはSMDである傾向があります。 拡張コネクタ:大きなスロットコネクタは、設計に必要に応じて、小さなアドインカードを収容できます。 キーと方向:スロットコネクタは、PCIeカードの取り付け時の方向を決定するためにキーが付けられています。このキーはアドインカードに含まれている必要があります。 PCIeアドインカードは通常、カードに取り付けられるフランジを持っており、これによりコンピュータのシャーシに対して固定されます。このフランジは、標準のPCIeアドインカードの寸法を制限します。 PCIeスロットコネクタの例 以下に示すのは、スロットコネクタの例です。デスクトップコンピューターやサーバーを開けたことがある人なら、これらのエッジコネクターを認識しているでしょう。示されているコネクターはSamtecから入手可能ですが、Amphenolのような他のベンダーも自身のエッジコネクターを提供しています。 8レーン(上)と16レーン(下)のPCIeエッジコネクター(Amphenol) エッジコネクターとカードフランジのサイズと配置を考慮すると、通常、エンクロージャ内の形状とフィットを検証するためには機械モデリングが必要です。新世代のPCIeについては、チャネル帯域幅と総損失を検証するためにSIシミュレーションも必要です。これらの考慮事項を超えて、設計者は必要なレーン数を収容するためにカードピンアウトを構築する必要があります。 PCIeカードピンアウトのレーン数 PCIeコネクターのカードピンアウトは、レーン数に応じて変わり、 JTAGなどの追加インターフェースも含まれます。また、カードエッジには電源ポートと多数のグラウンドピンが分布しています。ピンのピッチは1.0 mmで、PCIe RXおよびTXレーンはグラウンドピンと交互に配置されています。 記事を読む
メカニクスがマルチボードPCB設計でシームレスに電子と融合 メカニクスがマルチボードPCB設計でシームレスに電子機器と融合 1 min Blog PCB設計者 PCB設計者 PCB設計者 PCBレイアウトをじっくりと鑑賞する時間を取ると、回路基板が科学や工学によって推進されているだけでなく、芸術作品であることに気づくでしょう。マルチボードPCB設計は、形状、機能、能力の面での可能性を広げます。実際には、多くの製品がマルチボードシステムであり、複数のPCBを単一のパッケージやエコシステムに統合する必要性は、電子開発の特化された領域です。 マルチボードシステムが単一のPCBを扱うよりも複雑な理由は何でしょうか?それは概念の難しさにあるのではなく、マルチボード間の接続がエラーを起こしやすいという事実にあります。さらに、手動でのレビューとバックチェックは時間がかかり、正直なところ、精度の面で望ましいものがありません。このような状況が発生するたびに、EDA業界はマルチボードシステムの接続性を簡単にチェックできる設計および検証ツールのホストで介入します。これらのツールが実際にどのように機能するか見たことがない場合、ここにそれらが機械的および電気的に解決する大きな問題のリストがあります。 機械的側面 コストをかけずにスペースを節約 マルチボード設計は、エンクロージャー内の利用可能なスペースを効率的に使用するいくつかの興味深い方法を提供します。リジッドフレックスPCBのような他のオプションと比較して、マルチボードシステムは、PCBの製造コストとボード間接続のコストが低いため、コストが低くなる傾向があります。 マルチボードシステムでこのスペース効率をどのように実現できるでしょうか?ここにいくつかのアイデアがあります: ヘッダーやメザニンコネクタを使用したボード間のスタッキング エンクロージャーの壁に沿った直角スタッキング エンクロージャー内の機械式レールを使用したボードスタッキング エッジコネクタを使用した低プロファイルの接続 フレックスプリント回路(FPC)リボンを使用した奇妙な角度でのスタッキングや接続 これらのスタッキングおよび接続技術はすべて、エンクロージャー内のZ次元を探索することを要求します。つまり、最低限、PCBとそのコンポーネントの標準的な3Dモデル形式を使用した3Dビジュアライゼーションツールが必要です。 エラーチェックはどうでしょうか?明らかに、3D設計ツールを使用すると、ボードを好きなように配置できますが、それらが正しく、機械的干渉なしに適合するかどうかをどのように知ることができますか?ここで、これらの設計タスクを引き受けるためにMCADエンジニアを巻き込む時です。 機械設計エンジニアと協力する マルチボードPCB設計では、自分の専門分野から一歩出て、機械設計エンジニアと直接協力する必要があります。機械設計エンジニアは、単に筐体を作成することを超えて、マルチボードシステム設計において非常に重要な役割を果たします。彼らの仕事は、電気レイアウトに影響を与えるいくつかの重要な設計タスクにまで及びます: ケーブルまたは配線の計画 筐体内での機械的および電気的な組み立て順序の計画 ボタン、コネクターなどのための筐体の開口部の決定 製品内のコンポーネント間の衝突の特定 アクティブまたはパッシブ冷却要素の組み込み 記事を読む
DFM for Space 航空宇宙プロジェクトのための必須DFMのヒント 1 min Blog PCB設計者 PCB設計者 PCB設計者 製造のための設計(DFM)はかなり複雑になることがあります。製造が容易でありながら、高品質、信頼性、およびコスト効率を確保する製品を作成することを含みます。DFMは、信頼性のための設計(DFR)、テスト可能性のための設計(DFT)、組み立てのための設計(DFA)などの関連概念も包含します。 宇宙産業では、DFMの要求はさらに大きくなります。設計者は、温度、放射線、真空などの極端な環境を考慮に入れなければなりません。ESAやNASAなどの異なる宇宙機関の厳格な信頼性要件と様々な基準のために複雑さが増します。これらの基準を満たすコンポーネントは非常に高価になることがあり、ボードのリビジョンごとにさらなる費用が加わります。宇宙用の最初のPCBを設計している場合でも、プロセスについて単に好奇心がある場合でも、読み続けてください。経験豊富なユーザーでもここで貴重な洞察を得ることができるかもしれません。 PCBメーカーとの早期連絡を維持する これは明らかに思えるかもしれませんが、非常に重要です。最初から、設計と品質の要件を満たすスタックアップと材料を選択する必要があります。プリプレグとコアが低いアウトガス特性を持っていることを確認してください、特にあなたのボードが光学要素の近くにある場合は特にです。早期にHDI(High Density Interconnect)を使用するかどうかを決定してください。これにより、PCBを小さく、より信頼性の高いものにすることができますが、製造およびテストのコストが高くなります。スタックアップでμviasを簡単に定義できます。 接続の信頼性を高めるために、低電流を運ぶ信号であっても、2つ以上のレーザービアを使用してください。 パッド内の2つのビア。ビアの色は、最下層とその直上の層を示しています。 組立工場と早期に連絡を取り合う この重要な点はしばしば見落とされます。各組立工場は異なるフットプリントに対して特定のプロセスを持っており、フットプリントのサイズは組立工場の要件に合わせる必要があります。エンジニアリングモデル(EM)の場合、異なるフットプリントを持つ宇宙用には認定されていないコンポーネントを使用するかもしれません。フライトモデル(FM)コンポーネント用にボード上にスペースを確保することは良い習慣です。さらに、比較レポートを使用して、すべてのフットプリントが最新であることを確認してください。 比較レポートのサンプルビュー 重いコンポーネントには接着剤を検討する 重いコンポーネントには安定性のために接着剤が必要です。この接着剤のためのスペースをフットプリント上に残してください。これを示すには、別のレイヤーに情報を配置するか、そのエリアに他のものを配置しないようにキープアウト領域を指定することができます。 接着剤の配置がキープアウト領域によってマークされたフットプリント(両側に二つの赤い長方形) テストを忘れないでください 宇宙産業では、軌道上での修理が不可能なため、テストは非常に重要です。はんだ接合部での信号のプロービングは避けてください。これはそれらにストレスを加える可能性があります。代わりに、徹底的なチェックのために基板上にテストポイントを配置してください。GNDポイントを近くに配置すると便利です。 テストポイントのための典型的な回路図シンボル PCB上のテストポイント 基板をアウトガスさせることを許可してください 宇宙産業の要件を満たす材料であっても、わずかにアウトガスすることがあります。これを容易にするために、PCB上でハッチングされたポリゴンを使用してください。しかし、 記事を読む