Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
PCB設計者
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
PCB設計者
Highlights
All Content
Filter
Clear
Thought Leadership
多層基板用のPCB基板材料としてのFR4代替品の選択
次の多層PCBにFR4を選ばなくても大丈夫です。他のPCB基板材料の選択についてもっと読む。
Whitepapers
最新のPCBレイアウトの課題の解決方法
はじめに 「ママ、子供たちを小さくしちゃったよ」、「世界って小さいんだね」。ディズニーファンにはおなじみのフレーズです。しかし、これらのフレーズを使って、プリント基板(PCB)設計の継続的な小型化を同様に簡単に表現できます(図1)。以下の統計を考えてください。 過去10年間で平方インチ当たりのピン数が3倍になった一方で、基板面積は比較的一定に維持されました。 15年間で、部品1個当たりの平均ピン数が4 ~ 5分の1に減った一方で、平均部品点数が4倍になりました。 設計のピン数は3倍になり、ピン間の接続数は倍増しました。 その結果、部品と最終製品が小さくなるにつれて、PCBレイアウトはより高密度かつ複雑になりました。PCBの小型化と複雑性がともに高まることで、全ての部品を調和させ確実に動作させる責任があるPCB設計者は複数の課題に直面しています。ある調査では、エレクトロニクス企業の53%が、最も競争力のある製品を低コストでより迅速に市場に投入しようとする際にPCBの複雑性が増大することが主な課題であると回答しま した。PCBレイアウトの最も一般的な課題の一部を以下に示します。 多ピンボールグリッドアレイ(BGA)の配線 小さく不規則な形状の製品に適合するフレキシブルPCBの設計 層数を増加させることなくPCBレイアウト密度を高めること 複雑な多層PCB設計における電圧降下の回避 効果的なECAD-MCAD統合と製造業者とのよりよいコミュニケーションの確保 高密度で複雑なPCB上に十分なテストポイントを備えること これらの課題は全て、最先端の統合PCBレイアウトソフトウェアによって軽減できます。 BGAの配線の課題を解決 BGAは、多ピン超高密度のPCBと集積回路(IC)のパッケージ化のための一般的な手法です。PCB設計者がBGAを選択するのは、小型化および機能要件を満たすのに必要な柔軟性を備えていながら、コスト効率を高めることができるためです。問題は、ピン数が増えピッチが細かくなるにしたがって、「BGAブレークアウト」(BGAの配線)がさらに難しくなるということです。非効率的な配線は層数を増加させ、ひいてはコストを押し上 げ、シグナルインテグリティの問題、層間剥離、ビアのアスペクト比の問題を発生させる場合があります。(※続きはPDFをダウンロードしてください) 今すぐ
マイクロビア製造プロセスとHDI基板
初期のHDI製造 高密度相互接続プリント基板に関する取り組みが始まったのは、研究者たちがビアサイズの縮小方法を調べ始めた1980年のことです。最初に革新を起こした人物の名前は分かりませんが、初期のパイオニアには、MicroPak LaboratoriesのLarry Burgess氏(LaserViaの開発者)、TektronixのCharles Bauer博士(光誘電ビアの開発者)[1]、ContravesのWalter Schmidt博士(プラズマエッチングビアの開発者)などがいます。 初の製品版のビルドアップ基板(シーケンシャルプリント基板)は、1984年のHewlett-Packardによるレーザードリル加工FINSTRATEコンピューター基板です。1991年には、日本のIBM野洲によるSurface Laminar Circuit(SLC)[2]とスイスのDyconexによるDYCOstrate [3]が続きました。図1は、初のHewlett Packard FINSTRATE基板を表紙に載せた Hewlett-Packard Journal(1983年)です。 HPのFinstrateレーザービア レーザードリル加工のマイクロビアは、HPが意図的に開発したのものではなく、新製品の32ビットマイコンチップをリバースエンジニアリングした結果としてもたらされました。「FOCUS」と呼ばれたこのチップは、NMOS-IIIで開発された32ビットのマイクロプロセッサーで、極めて大きい電流を消費するという特性を持っていました。当初意外に思われたのは、この新しいマイクロプロセッサーが、1.6mm厚の基板にある標準0.3mm径のスルーホールビアのインダクタンスをドライブできないという点です。ドライブできたのは、20~30ナノヘンリーのインダクタンスか0.125mmのブラインドビアのみでした。次の驚きは、FR-4の通常損失(Dj=0.020)をドライブするエネルギーがないことでした。そのため、純粋なポリテトラフルオロエチレン(PTFE)が使用されました。ICの冷却要件によって、極小のブラインドビアと非常に低損失の絶縁体を備えたメタルコア基板が必要とされていたため、ダイレクトワイヤボンド集積回路(IC)を備えた銅コアのビルドアップ基板が作成されました。 図1. 一般生産された最初のマイクロビア。1984 年に生産を開始したHewlett Packard
最新の製造設備でPCBに基準マークを配置する必要はあるか
設計における基準マークの配置忘れは、ある種の「ホラー」です。 10年前、筆者はホラー映画鑑賞をやめました。若いときは単純に恐怖感を心から楽しみましたが、技術者としてのキャリアを開始するとともに、興味はアクションやSFに移りました。これはおそらく、仕事上の単純なミスが製造後の悲惨な悪夢につながったホラーストーリーを相応に経験していたからだと思います。 筆者が電子機器設計の仕事を始めた頃、 スルーホールコンポーネント が非常に一般的で、 表面実装コンポーネント を目にすることはめったにありませんでした。マイクロコントローラー(MCU)のQFP(Quad Flat Package)が一般的になると、古い プラスチック リードチップキャリア(PLCC) のフットプリントから移行せざるをえませんでした。これは、QFPがPCBに直接実装できる一方、PLCCは追加ソケットを必要としたためです。チップ製造業者が、QFPや類似のパッケージを支持し、PLCCパッケージのMCUの製造を中止するのはもう時間の問題だと思いました。 PCB実装業者から、200枚の生産用基板のMCUを実装できないとの電子メールを受け取ったときに、悪夢が始まりました。スルーホール コンポーネントであるPLCCソケットに慣れていたため、筆者はPCBに基準マークを配置することに思い至りませんでした。基準マークを配置しないということは、狭いピッチでQFPにパッケージされたMCUを全て手作業で実装しなければならないことを意味しました。 その結果、かなりの割合の基板が不良品となり、不完全な手作業によるはんだ付けの欠陥を修正するためにとてつもない時間を費やすことになりました。それ以来、業者から、基準マークなしでも製造できる機械にアップグレードしたとの連絡を受けていても、筆者は設計に必ず基準マークを使用するようにしています。 基準マークを省略すると、ひどい基板ができあがる可能性があります。 基準マークの概要とその製造時の役割 PCB設計において、 基準マーク はpick
設計にフェライトビーズを使用してEMIを低減する方法
「ロケット科学みたいに、さっぱりわからない」というのはよく使われてきた言い回しです。小さなJimmyは九九までロケット科学のようだと言っていました。今日では「ロケット科学」を「電磁気干渉」と置き換えるべきでしょう。EMIは多くの人々がぼんやりとしか理解していないものの1つです。この理由から、私は 正しい接地方法、 AC/DC回路、 高速配線、 差動ペア配線などについて記事を書いてきました。順番から、次に書くべきなのはフェライトビーズを使用してEMIを低減する方法でしょう。フェライトを使うのは少々面倒なので、まず その背後にある理論を理解することが重要です。ほとんどの電子部品は本質的にプラグアンドプレイです。しかし、フェライトはシステム内に設計して組み入れる必要があります。理論を理解すれば、LCフィルター、GNDプレーンと電源プレーンの分離、ソースのノイズのフィルタリングなどを実践できるようになります。 フェライトのLCフィルター 設計者は多くの場合、フェライトビーズのことをローパスフィルターと考えようとします。これらは確かに高周波をブロックしますが、特定の帯域しかブロックしません。それより上の帯域では、固有の容量が優先します。ビーズ自体はローパスフィルターではありませんが、バイパスコンデンサーと組み合わせてローパスフィルターにすることができます。この場合、本質的にLC(コイルとコンデンサー)フィルターとして機能します。フェライトビーズをこのように使用するときに大きな問題の1つは、LC共鳴です。 重要な点を先に述べると、回路の電源ラインにフェライトビーズを使用する場合、バイパスコンデンサーが必要です。低い周波数ではフェライトビーズはコイルとして機能し、電流の変化に抵抗します。すなわち、集積回路が電流のスパイクを引き出そうとすると、ビーズはそのピークに抵抗し、回路の動作の妨げとなります。バイパスコンデンサーは電荷を保存し、これらの電源スパイクを供給するために必要です。またバイパスコンデンサーは一般的にも良いやり方です。 コンデンサーとフェライトを設置したら、高周波をフィルタリングして除去できます。フェライトビーズには、LCフィルターに使用される通常のコイルと比較して、いくつかの利点があります。フェライトビーズは低い周波数で ロールオフが急速です。また、固有の抵抗が存在するため、発生の可能性がある共鳴を減衰させるため役立ちます。多少の減衰能力はあっても、LC共鳴は依然として発生する可能性があります。 大きなコンデンサーを使用するときは、特にリスクが大きくなります。共鳴が発生した場合、 最大10dBのゲインを招くことがあります。フィルターの設計では共鳴を避けるよう注意してください。 フェライトビーズとバイパスコンデンサーを使用して信号をフィルタリング デジアナ混在信号のGND/電源プレーンの分離 EMIが回路内を伝搬する主な手段の1つは、GNDおよび電源プレーンです。混在信号回路では、単一のGND/電源プレーンがアナログ信号とデジタル信号の両方に使用されるため、特にこれが一般的となります。このため、 GNDと電源のプレーンを別にするのが最良ですが、GNDは依然として同じ相対電圧に参照される必要があります。これらの問題から極めて困難な課題が生み出されますが、この課題を解決するためにフェライトビーズが役立ちます。 フェライトビーズは、 アナログとデジタルのGND/電源プレーンを接続するために使用できます。この方法により、両方のプレーンは依然として同じ電圧に参照されますが、互いに絶縁されるようになります。ビーズは、通常ならプレーンから別のプレーンへ直接転送される ノイズをブロックできます。
Thought Leadership
フェライトビーズの機能と適切な選択方法
ときどき、電磁波が目に見えたらいいと思います。もし見えたら、EMIをはるかに簡単に検知できるでしょう。複雑な設定やシグナルアナライザーをむやみにいじり回す代わりに、私なら一体何が問題なのかを見極めます。EMIを見ることはできませんが、場合によってはオーディオ回路を通じて音を聞くことはできます。この種の干渉に対して可能な解決方法の1つがフェライトビーズです。困ったことに、フェライトビーズにはちょっと不可解なところがあります。フェライトビーズを適切に使用するためには、その電磁特性と使用中にそれがどのように変化するかを理解する必要があります。フェライトビーズの原理を理解したら、自分の基板に適したものを注意深く選択する必要があります。適切なフェライトビーズを選択しないと、最終的には手に余る問題が生じる可能性があります。 フェライトビーズの原理 フェライトビーズは、高周波信号を減衰するために使用されます。このように説明すると、コイルと同じだとお考えになるかもしれませんが、フェライトビーズはコイルよりやや複雑です。簡素化したフェライトビーズの回路モデルは、その周波数特性を理解するのに役立ちます。ただし、その特性は、電流と温度の関数として変化します。 フェライトビーズは、直列抵抗体の後にコイル、コンデンサー、抵抗器を全て並列したコンポーネントとして モデル化できます 。直列抵抗体は、DC電流に対する抵抗です。コイルは、高周波信号を減衰する主要コンポーネントです。並列された方の抵抗器は、AC電流の損失を示します。コンデンサーは、寄生容量を示します。フェライトビーズの インピーダンス対周波数の曲線 では、大部分が抵抗であるインピーダンスが、狭い帯域でのみ極端に高くなります。ここでは、フェライトビーズのインダクタンスが優位です。この帯域より上では、寄生容量が引き継ぎ、高周波インピーダンスはすぐに低くなります。 フェライトビーズには、通常、特定のDC電流に対する定格電流があります。アンペア数が指定された電流値より大きいとコンポーネントが損傷する可能性があります。問題は、この制限が熱により大きく影響を受けるということです。温度が高くなると、 定格電流がただちに下がります 。定格電流は、フェライトビーズのインピーダンスにも影響します。DC電流が大きくなると、フェライトビーズは「電磁飽和」してインダクタンスを損失します。電流が比較的大きい場合は、飽和により、 インピーダンスを最大90%減らす ことができます 負荷電流はフェライトのインピーダンスを変える可能性があります。 適切なビーズの選択方法 ここまでで、フェライトビーズの原理を理解できたことと思いますので、次に、自分の回路に適したビーズを選択します。これはそれほど難しくはありません。ビーズの仕様に注意するだけです。 多くの設計者は、フェライトビーズが「高周波を減衰する」ことを知っています。ただし、フェライトビーズは、特定範囲の周波数成分を除去できるのみで、広帯域のローパスフィルターのようには機能しません。不要な周波数成分が抵抗帯域内にあるフェライトビーズを選択する必要があります。不要な周波数成分が抵抗帯域よりやや低い/高いものを選択すると、期待する効果が得られません。 ビーズの製造業者が、ビーズのインピーダンスに対する負荷電流曲線を提供可能かどうかも確認してください。負荷電流が非常に大きい場合は、電磁飽和してインピーダンスを損失することなく電流を処理できるビーズを選択する必要があります。 注意事項 フェライトビーズは、高周波では基本的に抵抗負荷ですので、回路で若干の問題を起こす可能性があります。ビーズを配置する場合は、電圧降下と放熱を考慮する必要があります。
Pagination
First page
« First
Previous page
‹‹
ページ
9
ページ
10
ページ
11
ページ
12
現在のページ
13
ページ
14
Next page
Next ›
他のコンテンツを表示する