Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
Search Open
Search
Search Close
サインイン
PCB設計者
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
PCB設計者
PCB設計者
PCB設計者のためのリソースと情報をご覧ください。
Learn How Altium Supports PCB Designers
Overview
All Content
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
ECADライブラリ管理者
電気技術者
技術マネージャー
ITマネージャー
機械エンジニア
PCB設計者
購買・調達マネージャー
ソフトウェアエンジニア
ソフトウェア
Develop
Agile
Altium Designer
Altium 365
Assembly Assistant
BOM Portal
Configurable Workflows
GovCloud
Jira Integration
MCAD CoDesigner
Octopart
Requirements Portal
SiliconExpert
コンテンツタイプ
ガイドブック
ビデオ
ウェビナー
ポッドキャスト
ホワイトペーパー
適用
EMEA
APAC
Americas
ANZ
BOM管理を通じたPCB設計の卓越
1 min
Blog
+1
PCB設計者
購買・調達マネージャー
技術マネージャー
ITマネージャー
効果的な部品表(BOM)管理は、PCB設計の卓越性の基盤として浮上しています。市場を横断する製品が新しい技術やより複雑なコンポーネントを利用するにつれて、BOMの開発と管理の役割は基本的なリスト作成タスクから複雑で戦略的に重要な仕事へと進化しています。このシフトは、初期概念から最終生産に至るまで、企業がPCB設計にアプローチする方法を再形成しています。 包括的でよく管理されたBOMは、PCBプロジェクトの中心的なハブとして機能し、製品のコスト、品質、市場投入までの時間に影響を与える情報を提供します。現代のBOMには、少なくとも正確なコンポーネント仕様、数量、メーカー部品番号、代替部品オプションが含まれているべきです。この情報により、設計チーム、調達部門、製造業者間の効果的なコラボレーションが可能になり、製品ライフサイクル全体での エラーを減少させるワークフローを合理化します。航空宇宙や医療などのミッションクリティカルな産業では、堅牢なBOM管理がさらに重要です。 高度なBOMツールの力 多くの現代のBOM管理ツールは、AIと機械学習の機能を取り入れており、部品の可用性とコストに関する予測分析、設計要件に基づいた自動部品選択、そして賢い変更管理の提案を提供します。さらに、クラウドベースのコラボレーションプラットフォームは、リアルタイムの更新、バージョン管理、すべての関係者のための中央集権的なデータアクセス、そして強化されたセキュリティを提供します。 そのような先進的なソリューションの一つが、クラウドベースの Altium 365アジャイル電子開発プラットフォームの一部であるAltium 365 BOM Portalです。BOM Portalは、現代のBOM管理システムで利用可能な最先端の機能を体現しています。このツールは、BOMの決定と品質保証を改善するための強化されたデータエンリッチメントを提供します。それは、製品のリリースを品質やコストを犠牲にすることなく加速する、エンジニアリングと調達間のシームレスな コラボレーションを可能にする共有環境を提供します。 供給チェーン管理の鍵:可視性 供給チェーンの可視性は、 BOM管理の重要な部分となっています。先進的なツールは、部品の可用性とリードタイムに関するリアルタイムデータを表示し、サプライヤーのパフォーマンスを追跡し、供給チェーンの中断リスクを評価することができます。この情報を持って、設計者と調達チームは、遅延や製造問題を最小限に抑えるために、より速く、より情報に基づいた決定を下すことができます。 BOM Portalの主な利点の一つは、BOMに直接サプライチェーンデータを インテリジェントに統合することです。ユーザーがポータルで自分のBOMを開くと、意思決定を合理化し、設計品質を向上させるための豊富な情報にアクセスできます。在庫および価格データは、 OctopartおよびIHS
記事を読む
Altium 365 BOM Portal:設計エンジニアとサプライチェーン最適化にとってのゲームチェンジャー
1 min
Blog
+1
PCB設計者
購買・調達マネージャー
技術マネージャー
製造技術者
多くの設計チームでは、スプレッドシートなどの手動方法を使用してPCB(プリント基板)プロジェクトの部品表(BOM)を管理することが一般的な実践です。しかし、これらの伝統的なアプローチには、設計プロジェクトの成功に深刻な影響を及ぼす可能性のある問題が満ちています。BOM管理に手動ツールに依存することは、生産の遅延、コストの増加、さらには非準拠または時代遅れの製品をもたらす可能性がある非効率性、リスク、および誤解を導入します。 手動BOM管理の課題 人為的ミスに弱い: スプレッドシートは柔軟性がありますが、人為的ミスに非常に弱いです。部品番号の誤り、数量の誤り、または古いサプライヤー情報などの単純なミスが、生産ラインのさらに下流でコストのかかる混乱を引き起こす可能性があります。これらの エラーは、多くの場合、大量の時間とリソースが投資された後に遅れて発見されます。 リアルタイムデータの欠如: 手動のBOMはリアルタイムのサプライチェーンデータを統合していないため、エンジニアや調達チームはしばしば、部品の可用性、価格、およびコンプライアンスに関する古い情報を使用して作業しています。この乖離は、予期しない不足、リードタイムの延長、またはプロジェクトのスケジュールと予算を乱す予期せぬ価格の上昇を引き起こす可能性があります。 非効率なコミュニケーション:静的ファイルを通じて管理されるBOMは、電子メールやその他のアドホックな方法で共有されることが多く、バージョン管理の問題やチーム間の誤解を招くことがあります。これにより、関係者が古いBOMを基に作業を進めることがあり、設計と調達の段階 間での不一致のリスクが高まります。 コンプライアンス管理の難しさ:REACHやRoHSのような規制基準を全てのコンポーネントが満たしていることを確認するのは、時間がかかる手作業です。自動追跡がなければ、チームは定期的にコンポーネントのコンプライアンス状態を確認する必要があり、製品承認の遅延や再設計を必要とする非コンプライアント部品の使用リスクがあります。 コンポーネントライフサイクルの追跡ができない:急速に進化する電子市場では、コンポーネントがすぐに時代遅れになったり、終了(EOL)状態になることがあります。手動方法では、コンポーネントがもはや実用的でなくなったときに自動的に警告する機能が提供されません。これにより、最後の瞬間の再設計や生産の遅延が発生する可能性があります。 反応的な問題解決:供給チェーンのリスクを積極的に監視したり、コンポーネントの問題を早期に対処する能力がなければ、チームはしばしば反応的なモードに追い込まれます。これにより、急いで決定を下すことになり、調達コストが高くなり、エンジニアが 適切な代替品を見つけるために慌てたり、期限を守るためにプレミアムを支払ったりすることで、製品品質が損なわれる可能性があります。 これらの問題は、設計および製造プロセスにおいて大きな非効率を生み出します。市場投入までの時間が重要な業界において、手動でのBOM管理に関連するリスクは、競争上の優位性の喪失、生産コストの増加、および顧客の不満を招く可能性があります。 Altium 365 BOM Portal:PCB設計とサプライチェーン最適化のための包括的なソリューション Altium 365
記事を読む
BOMエラーを減らし、コンプライアンスを確保するためのヒント
1 min
Blog
+1
技術マネージャー
PCB設計者
購買・調達マネージャー
製造技術者
PCB組み立てにおける遅延や追加コストの最も一般的な理由の一つは、BOM内の部品情報の誤りです。BOM内で誤りが生じる理由は多岐にわたり、単純な部品番号の間違いから環境適合性データの欠落やDNPとして部品をマークすることまで、その範囲は広がっています。このデータを省略することは、製造業者に新たな責任を生じさせ、調達チームによる誤った部品の発注につながる可能性があります。 スケジュールを守ることは、これらの誤りを早期に発見するプロセスとツールを持つことについてです。ここでは、そのようなプロセスを実装する方法と、設計ツールを使用してBOMの問題を発見する方法についてのヒントをいくつかご紹介します。 部品を注文する前にこれらのBOMエラーをキャッチしましょう BOMの誤りは設計者にとってコストがかかり、スケジュールの遅延を引き起こしますが、部品データに簡単な変更を加えることで避けることができます。重要なのは、PCBのレイアウトが完成するのを待つのではなく、設計プロセスの早い段階でこれらの誤りをキャッチすることです。 そこで、最も厄介(そしてコストがかかる)BOMの誤りと、それらを防ぐために取ることができる手順をいくつか紹介します。 部品番号とパッケージの不一致 問題: PCBレイアウトに配置されたパッケージとフットプリントが、BOM内の部品番号と一致しません。 この問題はほとんどの場合、PCB組み立て時に発見され、その時点であなたは本当に困難な状況に陥っています。PCBを廃棄してプロジェクトを最初からやり直しますか?それとも、既存のランドパターンに合う代替部品を探しますか? ここでの選択肢は多くないことがありますが、一般的な解決策は、同じ部品番号ファミリー内で異なるパッケージオプションを持つ別の部品を見つけることです。最悪の場合、カスタムのインターポーザPCBを製作するか、PCBを廃棄する必要があるかもしれません。 解決策は?設計者は、PCBが生産に入る前にこの問題を発見できる部品作成およびライブラリレビュープロセスを持つ必要があります。一部のサブスクリプションCAMツールは、DFM/DFAレビュー中にこの問題を半自動的なプロセスで捕捉することもできます。大企業では通常、ライブラリアンのタスクを担当する人がいますが、小規模な企業は信頼できる部品ソースに依存して、コンポーネントのCADデータを見つけるべきです。 DNP部品の誤った呼び出し 問題: DNP部品が、実装された部品と同じ行に記載されているか、まったく記載されていません。 理想的には、DNPパーツはBOMやピックアンドプレースファイルに現れるべきではありません。もしDNPパーツがBOMに現れた場合、組み立て業者はそれがピックアンドプレース機をプログラムする際に手動で取り除かれることを確認する必要があります。これは、組み立て業者がBOMの手動レビューを行い、提出物全体で一貫性があるかをチェックするときに起こります。 DNPパーツを適切に指定せずにBOMをエクスポートすると、または少なくともDNPパーツを指定する際に一貫したアプローチを使用しないと、物事は混乱します。例えば、下の画像では、黄色でハイライトされた単一行にDNPパーツがあります。次の行にもDNPパーツがリストされていますが、前のパーツと同じ列にはありません。組み立て業者は自然に何が起こっているのか疑問に思うでしょうし、このパーツがDNPとしてマークされるべきかを確認するためにプロジェクトの文書を参照する必要があります。 解決策は? Altium Designerの「バリアント」のような機能を使用して、バリアントを定義し、DNPパーツを呼び出すための回路図マークアップを適用し、これをBOMマネージャーのDNPコールアウトと照合します。部品にDNPマーキングの正しい存在をチェックするプロセスを実装できない限り、これを行わず、代わりに組み立てバリアントを使用してBOMとピックアンドプレースの配置を同時に制御します。 受動部品の未知の部品番号
記事を読む
超高精細HDI PCB製造における半加工プロセス(SAP)の探求
1 min
Blog
+1
PCB設計者
電気技術者
購買・調達マネージャー
製造技術者
PCB技術が進化し続ける中で、超高密度インターコネクト(UHDI) PCB製造のような新しい製造技術が信じられないほどの可能性を解き放っています。最も変革的な進歩の中には、従来の減算エッチングでは達成できなかったより細かいトレースとスペースを実現する、半加算プロセス(SAP)と修正半加算プロセス(mSAP)があります。これらの革新は、PCB設計の限界を押し広げ、前例のない精度で複雑な回路を製造することを可能にしています。 PCB製造の文脈では、半加算プロセス(SAP)は、従来の減算方法からの脱却を提供し、減算エッチングで可能だった2ミルの閾値をはるかに下回る、これまで達成できなかったトレースとスペースを可能にします。SAPプロセスは、銅のような導電性材料を追加して回路を形成することを可能にし、それをエッチングで取り除くのではなく。この技術は、先進的な材料と組み合わせることで、高性能で小型化されたデバイスを含む次世代の電子機器をサポートする超微細な特徴サイズの扉を開きます。 PCB製造における半加算プロセスの主な利点 極端なミニチュア化 SAPおよびmSAP技術で最もエキサイティングな機会の一つは、PCBフットプリントを大幅に削減できる能力です。トレースとスペースの寸法がサブミクロンレベルに縮小することで、設計者は全体的な電子システムのサイズを劇的に小さくするか、または解放されたスペースを利用して、より大きなバッテリーや強化された機能性などの追加コンポーネントを統合することができます。これは、スマートフォン、ウェアラブル、IoTデバイスなど、スペースがプレミアムなデバイスにとって特に重要です。 簡素化されたレイヤリングと向上したルーティング効率 これらのプロセスのもう一つの重要な利点は、PCB設計で必要なレイヤー数を削減できる可能性です。タイトピッチのボールグリッドアレイ(BGAs)を持つコンポーネントや標準的な設計であっても、より少ないレイヤーで複雑な信号をルーティングできる能力は、コストと複雑さの両方を削減できます。レイヤーが少ないということは、マイクロビアとラミネーションサイクルも少なくなり、製造時間が短縮され、全体的な収率が向上します。機能性を維持または向上させながらレイヤー構造を簡素化できる能力は、信頼性と性能の両方の観点から大きな勝利です。 改善された信号整合性と精度 ミニチュア化とレイヤー削減は具体的な利点ですが、SAPプロセスは電気性能を大幅に向上させることもできます。最も重要な改善点の一つは、信号の整合性です。半加算プロセスは、より広範な減算エッチングプロセスではなく、正確なイメージング技術に依存しているため、トレースの幅と間隔をより細かく制御できます。これにより、インピーダンスの制御がより厳密になり、信号の劣化が減少し、これらの技術を高速デジタルおよびRFアプリケーションに理想的にします。 半加算エッチング対減算エッチング:簡単な概要 従来の減算エッチングプロセスは、銅被覆されたラミネートから始まり、不要な銅をエッチングして回路パターンを形成します。このプロセスは効果的ですが、銅の厚さと使用されるエッチング方法のため、細かいトレースとスペースを達成することには限界があります。 対照的に、半加算プロセスは、非常に薄い銅層または純粋な加算方法の場合は銅が全くない状態から始まります。銅は選択的に追加され、望ましいパターンを作成し、薄いシード層のみが除去される必要があります。この精度により、製造業者のイメージング能力にもよりますが、トレースは25マイクロン(またはそれ以下)という非常に細かい特徴を実現できます。 改良半加算プロセス(mSAP) 変更された半加算プロセス(mSAP)は、SAPの拡張であり、スマートフォンのような消費者向け電子機器の大量生産によく使用されます。主な違いは、開始する銅層にあります。mSAPはやや厚い箔から始まり、その結果、やや精密でないトレースプロファイルになります。mSAPは優れた特徴サイズを可能にしますが、トレース/スペースの範囲は通常30ミクロンで、開始する銅が厚いためトレースはより台形の形状をしています。 これらの違いにもかかわらず、mSAPは従来の減算法よりもはるかに細かい特徴を実現し、標準的なPCBと高度な基板レベルの製造技術の間の橋渡しと見なされています。このアプローチは、コストに敏感な大量アプリケーションで重要です。 基板のようなPCB(SLP)と超HDIの未来 この分野で頻繁に使用される用語は「基板のようなPCB」(SLP)で、これは加算または半加算プロセスで構築された回路基板を指します。SLPは、半導体基板の精度に近づく細かい特徴を可能にしますが、はるかに大きなPCBパネル上です。これは、伝統的なPCB製造のコストとスケーラビリティの利点を犠牲にすることなく、ミニチュア化が求められるアプリケーションにとって特に有利です。 典型的なSAPおよびmSAPプロセスフロー SAPとmSAPの両方について、プロセスフローは類似した手順に従います:
記事を読む
チップの偽造がどのようにしてより高度になっているか
1 min
Blog
PCB設計者
電気技術者
購買・調達マネージャー
半導体の基準に品質保証と厳格さがあるにもかかわらず、業界は依然として偽造の問題に悩まされており、これが続くほど悪影響を及ぼすことになります。 電子部品の購入者や製造業者は、購入を希望する製品に潜在的な問題がないか、調達プロセスをより深く掘り下げるべき要素がいくつかあります。PCB市場の一部で不足が生じている一方で、他の部分では余剰が見られるなど、調達のスピードが速いため、困難な時期に企業を誤った方向に導くことがあります。そのため、 品質保証対策に焦点を当てるべきです。 偽造製品に対する業界の見通しは、特に過去数年間で大幅に減少したケースを考えると、前向きです。2019年には 963件の部品偽造が報告されましたが、2020年には504件に減少しました。これは、新型コロナウイルスのパンデミックが中国企業の偽造活動を妨げたと言われていますが、今日でもまだ問題は残っています。 偽造チップとは何か? 偽造チップは、信頼できるメーカーからの既存ユニットを改変すること、電子廃棄物(e-廃棄物)からの中古部品を取得すること、または厳格なテストに合格しなかった部品を再製造することの3つの異なる方法で作成されます。 部品の改変:新しいコンポーネントを単に取り、自社の製品として販売する企業によって、法的な問題が生じます。製造業者は、チップを砂をかけたり、再マーキングしたり、または「ブラックトップ」処理をして、日付コードなどの新しい情報を適用します。このような改変は検出が非常に困難であり、コンポーネントが IDEA-ICE-3000偽造ガイドラインに準拠していることを確認するために、専門家の継続的なサポートが必要になることがあります。 電子廃棄物:これは半導体供給の減少に対抗するための有用なプロセスのように思えるかもしれませんが、このようなチップを購入する際には、購入者にとって固有のリスクがあります。これらの偽造部品の供給者が、これらを正規の製品として梱包する場合、購入者がそれを知らない可能性が最も高いです。 再製造:既存の回路基板から取り外された部品は、さらに一歩進んだ処理が可能ですが、ここでリスクが高まります。今日市場に出回っている一部のコンポーネントは、単に新しいチップとして再マーキングすることによって、電子廃棄物プロセスから再利用されています。これらの部品が正規品であるか、または新品として機能するかどうかを検出することは非常に困難です。 PCB業界で偽造が問題となったのはどうしてですか? 単に機会主義的なものである、チップの偽造—その他多くのPCBコンポーネントと同様に—はほぼ10年間問題となっています。電子業界が急速に成長し続ける中、部品の偽造は数十億ドル(あるいは 数兆ドル)規模の産業の頭痛の種であり、最も洗練された生産ラインにも影響を及ぼしています。 この偽造問題は、問題をさらに遡るとして、国立航空宇宙局(NASA)の注目を長い間引きつけています。米国商務省(USDC)の技術評価局は、2005年に3,868件のインシデントを記録しました。 USDCはこのデータをさらに詳細に分析し、NASAの 報告書で共有しています。調査対象の71社が偽造マイクロプロセッサのケースを経験し、52社が改ざんされたメモリユニットを取得し、47社が標準および特殊なロジック回路に影響があったと報告しています。 要するに、コンポーネントが適切な基準で評価されない場合、電子機器の性能と安全性が損なわれます。 製造業者にとってのパフォーマンス上の危険性は、再利用されたチップが既に受けている可能性のある熱と機械的損傷です。安全性の面では、偽造部品がコンプライアンスのレーダーをくぐり抜けることがあります。これは、満たされるべき品質基準を策定するビジネスと規制機関の両方にとって悪夢です。 この問題の規模を理解するために、AS6496基準が2014年8月に作成されましたが、部品がひび割れを通り抜けることがあります。これを認識することで、組織と当局は偽物を捕まえるさまざまな手段を強調することができます。
記事を読む
製品設計におけるBOMの複雑さを管理するための戦略
1 min
Blog
PCB設計者
電気技術者
購買・調達マネージャー
部品表(BOM)の複雑さを管理することは、プロジェクトの効率、コスト、成功に大きな影響を与える重要な課題です。BOMの複雑さは、それぞれが独自の仕様、供給業者、およびライフサイクルの考慮事項を持つ多数のコンポーネントを統合する必要性から生じます。この複雑さは、コストの増加、開発時間の延長、およびエラーのリスクの高まりにつながる可能性があり、製造業者がそれを効果的に管理するための戦略的なアプローチを採用することが不可欠です。 製品設計におけるBOMの複雑さが問題となる理由 BOMの複雑さは、製品設計および製造のさまざまな側面に影響を与える多面的な問題です。この複雑さの主な理由の一つは、現代の電子機器に関わるコンポーネントの数が非常に多いことです。例えば、典型的なスマートフォンには、異なる供給業者から調達された千を超える個々の部品が含まれている場合があります。この多様性は、すべてのコンポーネントが互換性があり、必要なときに利用可能であることを保証するために、細心の調整と管理を必要とします。 さらに、技術の急速な進歩は、コンポーネントが頻繁に更新されたり、新しいバージョンに置き換えられたりすることを意味します。この絶え間ない変化は、特定の部品が入手不可能になる陳腐化の問題につながり、設計者が迅速に適切な代替品を見つける必要があります。 BOMの複雑さに寄与するもう一つの重要な要因は、サプライチェーンのグローバル化です。コンポーネントはしばしば複数の国から調達され、それぞれに独自の規制要件、リードタイム、および物流上の課題があります。このグローバル調達は、 サプライチェーンに変動性と不確実性をもたらし、一貫性があり信頼できるBOMを維持することをより困難にします。 BOM複雑性を管理するための主要な概念フレームワーク BOMの複雑さによってもたらされる課題に対処するために、電子機器メーカーはいくつかの主要な概念フレームワークを採用することができます。これらのフレームワークは、 BOM管理を簡素化し、合理化するための構造化されたアプローチを提供し、製品が効率的かつコスト効果的に設計および製造されることを保証します。 1. モジュラーデザイン モジュラーデザインは、製品をより小さな、交換可能なモジュールまたはサブアセンブリに分解することを含む非常に効果的な戦略です。このアプローチにより、各モジュールを独立して開発、評価、および製造することができます。これにより、いくつかの重要な利点が提供されます。製品をこれらの小さく、管理しやすい単位に分解することで、設計および生産プロセスにおける柔軟性が大幅に向上します。各モジュールは、その特定の機能に最適化することができ、これにより性能と効率が向上します。 モジュラーデザインの主な利点の一つは、BOMの複雑さを管理しやすくすることです。各モジュールを別のエンティティとして扱うため、全体のBOMを単純化し、コンポーネントの追跡と管理を容易にします。このモジュラーなアプローチは、異なるチームが同時に別々のモジュールに取り組むことができる並行開発を容易にします。これにより、製品を市場に出すまでに必要な時間を大幅に短縮できるため、製品の複数の側面を同時に開発し、評価することができます。 さまざまな製品でモジュールを標準化することにより、メーカーは必要なユニークなコンポーネントの数を減らすことができます。この標準化は、在庫管理を単純化するだけでなく、規模の経済をもたらします。同じモジュールが複数の製品で使用される場合、メーカーはより大量のコンポーネントをしばしば低コストで購入できます。この大量購入は、大幅なコスト削減とリソースのより効率的な使用をもたらすことができます。 モジュラーデザインは、設計プロセスを加速することもできます。新しい製品が開発されているとき、デザイナーはゼロから始めるのではなく、既存のモジュールを活用することができます。この既存モジュールの再利用は、設計サイクルを短縮し、エラーのリスクを減らすことができます。また、デザイナーは既存のコンポーネントを再発明するのではなく、新しい機能や改善に焦点を当てることができるため、より大きなイノベーションを可能にします。 モジュラーデザインのもう一つの利点は、カスタマイズとアップグレードの容易さです。モジュールが互換性を持っているため、個々のモジュールを交換またはアップグレードするのが簡単で、製品全体を再設計する必要がありません。この柔軟性は、技術が急速に進化する業界では特に価値があり、製品を大幅な再設計努力なしに最新の進歩で更新できるようにします。 モジュラーデザインは、製品の保守と修理を向上させることもできます。製品が明確なモジュールで構成されている場合、不良コンポーネントを特定して交換するのが簡単になります。これにより、修理が迅速に行われ、ダウンタイムが少なくなり、顧客満足度が向上し、保守コストが削減されます。さらに、モジュラー製品は分解してリサイクルしやすいことが多く、より持続可能な製造実践に貢献します。 モジュラーデザインは、柔軟性の向上、BOM管理の簡素化、コスト削減、設計プロセスの加速、カスタマイズと保守の容易さなど、数多くの利点を提供する強力な戦略です。製品を小さな互換性のあるモジュールに分解することで、メーカーは各コンポーネントを最適化し、生産を合理化し、市場の要求により効果的に対応できます。このアプローチは、運用効率を高めるだけでなく、製品開発におけるイノベーションと持続可能性をサポートします。 2. 製造可能性のための設計
記事を読む
柔軟な回路設計で避けるべきトップ10の一般的な間違い
1 min
Blog
PCB設計者
購買・調達マネージャー
製造技術者
フレキシブル回路の設計は、経験豊富なPCB設計者でさえも難しいと感じる独特の課題を提示します。フレキシブル回路は重量の削減、スペースの節約、複雑な形状への適応能力など、重要な利点を提供しますが、細部に注意を払う必要があります。この投稿では、フレキシブル回路設計でよくある間違いと、それらを避ける戦略について探ります。 1. 曲げ半径の要件を無視する 曲げ半径は、フレキシブル回路設計において重要なパラメータです。これは、 フレキシブル回路を損傷を引き起こさずに曲げることができる最小の半径を指します。この限界を尊重しないと、材料の疲労、亀裂、そして最終的には回路の故障につながる可能性があります。 間違い: 設計者は、スペースの制約やその重要性の理解不足のために、正しい曲げ半径を無視することがあります。この見落としは、限られた回数の曲げ後に故障しやすい設計につながる可能性があります。 回避する方法:問題を避けるためには、材料の厚さ、種類、層数に基づいて適切な曲げ半径を計算し、それに従うことが重要です。一般的なガイドラインとして、フレックス回路の厚さの少なくとも10倍の曲げ半径を維持することが推奨されます。この基準に従うことで、銅のトレースと誘電体材料への不当なストレスを防ぎ、回路の寿命を延ばすことができます。 フレックスPCBにおける静的曲げと動的曲げの詳細を学ぶ 2. 不適切な材料選択 フレキシブル回路設計における 材料の選択は、回路の性能、柔軟性、耐久性に大きな影響を与えます。間違った材料を選択すると、回路の効果が損なわれ、早期に故障する可能性があります。 間違い:よくある間違いは、特定の用途に適しているかどうかを考慮せずに、コストだけに基づいて材料を選択することです。例えば、頻繁に曲げる必要があるアプリケーションで、硬すぎる材料を選択すると、初期コストは抑えられるかもしれませんが、回路の故障につながる可能性があります。 それを避ける方法:材料選択は、アプリケーションの要件によって決定されるべきです。例えば、ポリイミドはその高い熱安定性と柔軟性のために人気がありますが、環境条件や特定の使用ケースに応じて、他の材料の方が適切な場合もあります。さらに、接着層にも注意を払うべきです。これは、回路の全体的な柔軟性と耐久性において重要な役割を果たします。 3. トレースルーティングにおける鋭角 フレキシブル回路のトレースルーティングは、特に回路が頻繁に動かされたり、曲げられたりするアプリケーションでは、機械的信頼性を確保するために慎重な検討が必要です。 間違い:一般的に、硬質PCBのトレースルーティングは鋭角で行われます。これは、曲げられたときにストレス集中の場所を作り出し、トレースに物理的な損傷を引き起こす可能性があります。 それを避ける方法:フレキシブル回路の場合、鋭角ではなく、滑らかで徐々に曲がるカーブでトレースをルーティングすることが望ましいです。鋭い曲がり角はストレスを集中させ、トレースの亀裂や剥離のリスクを高めます。さらに、可能な場合はより広いトレースを使用することで、曲げに対する機械的耐久性が向上します。
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
12
現在のページ
13
ページ
14
ページ
15
ページ
16
ページ
17
Next page
››
Last page
Last »