Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
PCB配線
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
クラス最高のインタラクティブ配線
どんなに複雑なプロジェクトでも手動による配線時間を短縮できます。
ソリューションを探す
PCB配線
組み込みシステム用のFPGA PCBレイアウトを開始する方法
FPGAは、既製のSoCが利用できない高度な組み込みシステムにおいて、革新を支援する重要な要素です。組み込みシステムでFPGAを使用すべき理由を見てみましょう。
記事を読む
高速PCBにおけるスキュー源の対処
スキューについて話すとき、私たちはしばしば十分に具体的ではありません。スキューとジッターに関するほとんどの議論は、ルーティング中に発生するスキューのタイプ、具体的には差動ペアの長さの不一致やファイバーウィーブによるスキューに焦点を当てています。実際には、インターコネクト上の全体のジッターに寄与するさまざまなスキュー源があり、正確なタイミング制御を必要とするシリアルバスやパラレルバスではこれらを定量化することが重要です。 スキュー源のリストを作成すると、ファイバーウィーブによるスキューはスキュー源の長いリストの中の1つに過ぎないことがわかります。以下では、可能なスキュー源のリストを見て、それらがPCBの動作にどのように影響するかを見ていきます。下記のリストから、スキューの問題のいくつかは、PCB基板のファイバーウィーブ構造に注意を払うだけでは簡単に解決されないことがわかります。 ジッター = 全体のスキュー ここで最初に注意すべき点は、ジッターとスキューの違い
記事を読む
PCBの銅表面の粗さがどれほどまでなら許容されるか?
銅の粗さについて話すとき、それを一様に悪いものとして扱うことがよくあります。しかし、実際には、銅が粗くても問題なく機能する回路は常に存在します。他のすべての領域で仕様に合わせて製造されている限り、動作周波数や帯域幅が十分に低ければ、トレースの粗さは問題にならないかもしれません。「十分に低い」とは具体的にどの程度であり、粗さの影響が無視できるほど小さい場合はいつか? 最近の銅箔に関する記事では、銅箔の異なるタイプと、これらの箔から期待できる粗さの範囲についていくつかの背景を提供しました。高周波設計のための材料を探し始めるとき、粗さがインピーダンスと損失に過度に影響するかどうかを判断することが重要です。この記事では、設計で粗さを最小限に抑えるべきかどうかを判断するために使用できる3つの戦略を紹介します。これには、データを見るか、粗さを判断するためにいくつかの簡単な計算を行うことが含まれます。 銅箔の粗さを心配すべき時はいつですか? これは重要な質問であり
記事を読む
高周波設計用のPCB銅箔の種類
あなたのデザインは滑らかなPCB銅箔が必要ですか? すべては、あなたが働いている周波数の範囲に依存します。 この記事でもっと学びましょう。
記事を読む
モード選択型伝送線路を用いたmmWaveルーティングを活用する
高周波数およびデータレートチャネルは、モード選択型伝送線路として配線することができます。この配線技術を検討すべき時について説明します。
記事を読む
PCBルーティングにおける電磁ソルバーを用いた寄生抽出
寄生抽出:集積回路設計コミュニティは、特にゲート特性が約350 nm以下に減少し、チップが高速で動作する場合、毎日この課題に取り組まなければなりません。PCBコミュニティも、電力供給ネットワークをより良く設計し、正確なインピーダンスを持つ相互接続を行い、クロストークや結合メカニズムを適切に定量化するために、この考えに取り組む必要があります。特定のジオメトリからレイアウトの寄生を抽出するために使用できる多くのサードパーティアプリケーションがありますが、これらのツールの結果は、ほとんどの設計ソフトウェアで使用するには実用的ではありません。 PCBで寄生について心配する理由は何であり、設計プロセスでこれらをどのように扱うことができるのでしょうか?意図的および非意図的な寄生は、PCB内の信号および電力の挙動を完全に担っています。インピーダンスを計算するとき、実際には2つの重要な寄生を計算しており、これらをルーティングエンジンの一部として使用しています。これらの値を、クロストークの予測
記事を読む
Altium Liveに関する質問です: デジタル信号はコプラナ導波路にありますか?
GPCW構造がデジタル信号に与える影響を考えたことはありますか?ヒントは、Sパラメータを見てみましょう!
記事を読む
モード変換のガイド、その原因と解決策
差動ペアは、受信機での適切な終端と共通モードノイズの抑制を目的として、そのインピーダンスと長さのマッチング許容度について最もよく議論されます。ボード間接続やカスケード伝送線配置などの相互接続では、時々見落とされがちな重要なEMCコンプライアンス指標があります。これはモード変換であり、差動および共通モード信号伝送のSパラメータ測定で視覚化できます。 「モード変換」という用語は、特に波が二つの媒体間の界面を横切って伝播する際に屈折する光学の文脈で最もよく議論されます。ここでは、波が真の非偏光(TEM)波から部分的または完全に偏光した波に変わることがあります。電子設計、特に高速相互接続設計では、信号が受信機で読み取り、解釈できるように、モード変換はある値以下に制限されなければなりません。この記事では、高速設計におけるモード変換の短い概要と、一般的な差動標準からのいくつかの例を見ていきます。 モード変換の概要 用語「モード変換」とは、差動信号を共通モード信号に変換することを指します
記事を読む
差動ペアのインピーダンス:PCB設計のための演算器の使用
私は高校でさまざまなコンピューターの授業を受け、なぜイーサネットケーブルの導体が互いにねじれているのか常に疑問に思っていました。これが、信号が互いに干渉することなく目的地に到達することを保証する単純な設計方法であることを、私はほとんど知りませんでした。往々にして、複雑な問題に対する最善の解決策は、実のところ最も単純なものです。 導体の差動配線は、イーサネットケーブルに限らず、PCBにおける主要なトポロジーの1つです。回路基板の設計者は、多くの場合、差動トレースではなくシングルエンドトレースの観点から伝送線路のインピーダンスを論じます。 一部の設計者は、差動ペアの各配線を固有のシングルエンドトレースとして扱う傾向があります。これにより、各配線間に存在する自然な結合が無視され、差動ペアのインピーダンスとシングルエンドのインピーダンスは大きく異なることになります。 伝送線路は本当にあるのか? トレースが伝送線路として動作するかどうかは、特定のトレースでの伝送遅延に依存します
記事を読む
PCBグラウンドレイヤーをクリアすることで導体損失を回復する
導体の損失を回復する必要がありますか?I/Oやコネクタの近くでグラウンドプレーンをクリアすることがどのように役立つかをここで説明します。
記事を読む
差動インピーダンス仕様に基づく設計方法
差動インピーダンスは時々誤解されがちで、それは複数の要因に依存します。特定の差動インピーダンス目標に到達するために必要なトレース幅の設計についてもっと学びましょう。
記事を読む
タイトとルーズの差動ペア間隔と結合を使用すべきか?
トレースインピーダンスについてや、特定のインピーダンスを達成するために必要なトレースサイズの計算方法に関して多くの質問を受けます。シングルエンドトレースの適切なトレース幅を決定することと同じくらい重要なのが、差動ペアの2つのトレース間の適切な間隔の決定です。そこでの問題は、差動ペアのトレースが互いにどれくらい近くにある必要があるか、そして「密接な結合」が本当に必要かどうかです。 この設計ガイドラインについて興味深いのは、おそらく最も不明確に定義されている唯一のPCB設計の経験則であることです。「緩い結合」や「密接な結合」が数値的には具体的に何を意味するのか?10人の異なる信号整合性の専門家に尋ねると、20種類の異なる回答を得るでしょう! この記事では、差動ペアの間隔に関する密接な結合と緩い結合の現実的な説明に近づきたいと思います。また、差動ペアの間隔がインピーダンス、差動モードノイズ、共通モードノイズの受信、終端などにどのように影響するかについても考察します。見ていくと、密接な結合
記事を読む
2層PCB上のUSBインターフェースのための配線要件
以前のブログで、デジタル信号を使用したルーティングとレイアウトをサポートするための2層PCBのルーティングルールを準備する際の基本的なポイントについて説明しました。特に、I2CやSPIのようなデジタルインターフェースをサポートするために必要な基本的なスタックアップとルーティングルールを見てきました。これらのインターフェースを扱う際、いくつかのシンプルなガイドラインがあなたのボードの信号整合性を保証し、EMIを減らすのに役立ちます。 では、USBのようなインピーダンス制御インターフェースはどうでしょうか?インピーダンス制御の必要性、そしてそれをいつ違反できるかを知ることが、2層PCB上でUSBのようなものをルーティングする際の主なポイントです。この記事では、USBのような高速プロトコルをどのようにルーティングすべきかを示します。具体的には、USBデータを運ぶトレースに受け入れることができる長さ制限を含む、ボードのルーティングに必要な重要な設計ルールを見ていきます
記事を読む
2層PCB設計でデジタル信号をルーティングできますか?
2層PCBは、設計者にとって一般的なエントリーレベルの選択肢であり、正しく構築されれば高速設計にも対応できます。
記事を読む
インピーダンス50Ωの2つの4層PCBスタックアップ
基板の両面で高速コンポーネントをサポートできる4層PCBスタックアップが必要ですか?一般的な4層スタックアップに代わる次の代替案を検討してください。
記事を読む
マイクロストリップPCBグラウンドクリアランス パート2:クリアランスが損失にどのように影響するか
前回の記事では、インピーダンス制御されたトレースと近接する接地された銅プールとの間に必要なクリアランスについての議論といくつかのシミュレーション結果を提供しました。私たちが見つけたことは、プールとトレースの間の間隔が小さくなりすぎると、トレースはインピーダンス制御された共面導波管(接地ありまたはなし)になるということです。また、トレースと接地された銅プールの間の間隔に関する3Wルールが少し過度に保守的であることもわかりました。 基本的に、目標インピーダンスを達成しようとしており、近くのプールがインピーダンスにどのように影響するかを心配している場合、3Wルールによって設定された制限よりも近づくことができます。ただし、適用できるクリアランスの正確な限界は、誘電体の厚さに依存します。厚い基板では、より小さいクリアランス対幅比が許容され、いくつかのシミュレーションで調査された実用的な積層板の厚さに対して3Wルールを快適に違反することがわかりました。
記事を読む
差動ペア、差動信号とは?
差動ペアと差動信号は、高速デジタル通信とデータ転送の中心的な要素です。
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
2
現在のページ
3
ページ
4
ページ
5
ページ
6
ページ
7
Next page
››
Last page
Last »
他のコンテンツを表示する