クラス最高のインタラクティブ配線

どんなに複雑なプロジェクトでも手動による配線時間を短縮できます。

Filter
0 Selected Content Type 0 Selected 全て Software 0 Selected 全て Clear ×
Clear
0 Selected Content Type
0 Selected Software
オートルートするかしないか-失敗した設計自動化の歴史 Thought Leadership オートルーティングか、それともオートルーティングなしか? 失敗した設計自動化の歴史 EDA設計自動化の完全な歴史と、1980年代から今日にかけてのPCBオートルーティング技術の進化について学びましょう。 エレクトロニクスの世界へようこそ。2016年です、そして私たちは人類の歴史の中で他のどの時代よりも技術的な洗練を目の当たりにしています。ただ今年だけで、自動運転車が公共の領域に導入され始め、ロケットが再利用のために宇宙から精密に着陸され、ムーアの法則はその終わりなき成長軌道で続いています。しかし、このすべての技術進歩の中で欠けているものが一つあります、それはまともなPCBオートルーターの比較です。 オートルーターの本当の問題 エンジニアがCADの意味を知っている限り、PCBオートルーターは存在していましたが、密集したPCBレイアウトを作成することに関わる設計者は、この自動化技術の実装をほとんど完全に無視してきました、それも当然のことです。オートルーティングのアルゴリズムは、最初に導入されて以来、あまり変わっていません。 技術が停滞し、さまざまなパフォーマンスと設定構成を提供するEDAベンダーがオートルーティング技術を提供している状況では、オートルーターが普及しないのも不思議ではありません。エンジニアリング時間を節約し、ワークフローを向上させることを目的としていたこの技術は、熟練したプリントボードデザイナーの専門知識や効率に対抗するためのゲームを強化していません。これがオートルーターが提供するすべてなのでしょうか? オートルーティング技術の初期 EDAベンダーによって生産された最初のオートルーターは、成果とパフォーマンスが悪いことで特徴づけられました。信号の整合性を保つためのガイドラインや設定をほとんど提供せず、プロセスで過剰な量のビアを追加することがよくありました。この初期技術の問題をさらに悪化させることに、オートルーターは厳格なX/Yグリッド要件に限定され、層に偏見がありました。 これらの制限の結果、ボードスペースが一般的に無駄にされ、エンジニアはバランスの取れていないPCBレイアウトの混乱を片付けることになりました。オートルーターから最適化されていないPCBレイアウトを修正するためにエンジニアが投資する時間は、手動でボードをルーティングするよりも多くの時間を要しました。最初から、オートルーティングは良いスタートを切っていませんでした。 グリッドレスオートルーティングの例 [1] 80年代のオートルーティングの進歩 年が進むにつれて、オートルーティング技術はわずかに改善されただけで、品質はプリント基板設計者の期待に追いついていませんでした。依然として、誤ったボードレイアウトスペース、レイヤーの偏り、過剰なビアの問題が残っていました。この技術の進歩を助けるために、EDAベンダーは新しいグラウンドプレーンコンポーネントやボード技術を採用し始め、信号整合性要件の達成を容易にしました。 このオートルーティング開発の時代を一言で表すならば、ハードウェアの制限による障害でしょう。オートルーターのアルゴリズムは、専用のCPUや追加のメモリを使用せずにグリッドサイズを小さくしてルーティング品質を向上させることができませんでした。ハードウェアベースの解決策がない中で、EDAベンダーは形状ベースのオートルーティングの回路図キャプチャを含む他の方法を探り始めました。 これらの新しい形状ベースのオートルーターは、以下の方法で基板製造と信号整合性要件を満たすのに役立ちました: コンポーネント間の効率的な相互接続の作成 オートルーティングプロセス中に追加されるビアの数を減らすことでPCBコストを削減 PCB上のレイヤーを減らしながらスペーシングを増やす これらの進歩にもかかわらず、オートルーティング技術は依然として最善とは言えない中途半端なものでした。EDAベンダーがハードウェアの制限を克服しても、PCB設計者はオートルーティング設計技術の採用について依然として懐疑的でした。 迷路オートルーティングの例 [2]
テストまたはDFTの設計に成功する方法 Thought Leadership テストまたはDFTの設計に成功する方法 プリント回路基板が完成するまでにかかる全コストは、ブランクPCBの製造コスト、コンポーネントのコスト、実装コスト、テストのコスト、のように複数の基本カテゴリに分類できます。最後に出てきた、完成した基板をテストするのにかかるコストは、製品全体の合計製造コストの25%から30%を占める場合があります。 テストカバレッジを最大化し、PCB製造エラーおよびコンポーネント障害に関する欠陥を迅速に分離できるよう、製品を設計することによって、DFTは収益性のある設計として最高のものとなります。基板のテストカバレッジを確実に最大化するために、従うべき設計の最善の方法はいったい何なのか? 確認してみましょう。 いつでも事前に計画する 設計を計画するときに聞く最初の2つの質問は次のとおりです。 誰が実装をテストしますか? 機能は何ですか? DFTガイドラインは最初のレイアウトの計画で役に立ちます。しかしながら、契約製造元(CM)に直接連絡して、知識のあるテストエンジニアと特定のニーズについて議論するのは良い考えです。テストエンジニアは機能について議論することができ、提供できるものとは異なるテスト方法論があることを気づかせてくれます。 バウンダリースキャン(JTAG)、自動ICTテスト、X線断層撮影(AXI)および目視検査(マニュアルおよびマシンビジョン)の組み合わせにより、最も包括的なテストカバレッジを実現します。また、これによりPCB製造プロセスについて即時フィードバックが得やすくなり、ワークフローを必要に応じて迅速に修正し、欠陥コンポーネントを特定して取り除くことができます。 インサーキットテスター(ICTテスト) テストカバレッジの決定 次に、完成品の品質を保証するためには、どのテストカバレッジが必要かを検討する必要があります。アプリケーションと実際のコストの制約から、利用可能なテスト機能の全てを使用することが必要な場合と、そうでない場合があります。例えば、地球の周りを公転する衛星を調査する場合、可能な限りのタイプのテストを実施して、修理できない環境でも、数年にわたって完成品が確実に機能するのを保障しようとするでしょう。しかし、ミュージカルの挨拶状を作成する場合は、シンプルな必要最低限の機能テストだけになるでしょう。 どのテストカバレッジが一番良いのでしょうか? 完成したプリント回路基板のテストフェーズで、全てのコストの最大30%を占めます。そのため、PCB設計ソフトウェアにおいて、DFTプロセスを計画し戦略を練ることが以前にもまして重要になっています。そこで、最初に製造者の能力を知り、品質の高い完成品を保証するためにテストカバレッジに何が必要かを考えます。 フリーのテスト容易化設計(DFT)ホワイトペーパーをダウンロードして、 利用可能なテストカバレッジとどのPCB設計が最適であるかを学びます。
BGAルーティングをネックダウン・トレース幅を使用して簡素化 BGAルーティングのための安全なネックダウントレース幅の簡素化の使用 BGA(ボールグリッドアレイ)にルーティングしようとした回数はどれくらいですか?クリアランスやトレース幅の制約によって阻止されたことはありませんか?トレースを細くする計算は可能ですが、安全な電流容量を維持しながらこの種の作業を特に得意とするのはコンピュータです。Altium Designer®のネックダウン機能を活用して、ルールや幅のサイズを調整するプロセスを中断することなく、BGAに効果的にルーティングする方法を学びましょう。 クリアランスやトレース幅の制約のためにBGAをトレースできないと、設計プロセスが大幅に遅くなり、ルーティングを停止してルールやPCBトレース幅のサイズを調整する必要があります。BGAルーティング内の狭いスペースは、それ自体で扱うのがかなり難しいです。それにPCBトレースの幅を変更する必要があると、さらに時間がかかります。ボードのルーティングに多くの時間を費やしているので、トレース幅を調整するために停止することなく、連続したプロセスを持つことが特に重要です。しかし、それをどのように制御できるでしょうか? 強化されたBGAルーティングのためのネックダウンの活用方法 ネックダウンは、トレースルーティングを狭いクリアランスで行うために、PCBトレースの幅をルールの制約内でより小さな幅に縮小するプロセスです。通常、ネックダウンはパッドサイズからトラック幅サイズへのパーセンテージ幅変更です。しかし、エリアに入るか出るときにトラックからトラックへのサイズ削減を設定することも可能です。 任意のPCB設計には、設計を安全なパラメータ内に制約する一連のPCBトレースルールがあります。これらのルールの1つがルートのトラック幅を定義します。このルールとクリアランス制約ルールは、通常、トラックがBGAに入ることを制限します。これを解決するために、ルーティングモードを終了し、そのBGA内に収まるようにルールを変更します。明らかに、トレースルーティングを行っているときに理想的ではありません。BGAに入ると出るときに自動的にトラック幅を変更するシステムが欲しいです。これがトラックがネックダウンする場面で役立ちます。 PCB設計ルールの幅は、BGAのスペース制約を満たすためだけに変更されるべきではありません。これは、設計の残りの部分に影響を与えるからです。代わりに、幅の縮小ルールは、現在の電流容量を維持できる幅で、BGAエリアにのみ制限されるべきです。これは、以下に示すように、Altium Designer ®の背景で、BGAの周りに生成されたエリアに特に設定されたPCBトレース幅ルールを設定することによって行うことができます。 BGAの周りにルームを配置することで、そのルームに対してのみルールを変更できます Altium Designerで中断なくルーティング Altium Designerを設定して、事前に定義されたプリント基板エリアに入るとPCBトレース幅が自動的に縮小するようにすることができます。ルーティングがBGAのエリアに入ると、PCBトレース幅はそのエリアのトラック幅ルールに合わせて自動的に縮小します。これは、BGAの複数のパッド間をルーティングして内側のパッドに接続する場合に特に重要ですが、トラックの幅がパッドに到達するには大きすぎる場合です。 この時短機能により、BGAの制約を満たすためにPCB設計ルールを停止して変更することなく、ボードのルーティングを継続的に行うことができます。 PCBトレース幅のネックダウンを Altium Designerでどのように活用するかをもっと学びたいですか?今すぐ私たちの無料ホワイトペーパー Using Neck-Down
ピン、パーツ、およびDiff-Pairスワッピングでルーティングを簡素化 Whitepapers ピン、パーツ、およびディフペアの交換でルーティングを簡素化 PCB設計で部品を配置する際、配置によっては接続が互いに交差することがよくあります。少数の交差接続に対しては、他の層へのビアやわずかに長いトレースルーティングを使用することができますが、下図のような多数の交差がある場合、ルーティングが非常に困難で時間がかかることになります。 より複雑なルーティングで交差数が多い場合、PCB設計者は通常、交差接続の数を減らすためにデバイスピンとサブパートの入れ替えを行います。ピンまたは部品の入れ替えはPCB内の交差を排除しますが、その変更は回路図にも反映されなければなりません。この論文では、ピン、サブパート、および差動ペアの入れ替えを簡単に管理し、交差接続を減らすことで最適なルーティングを実現し、回路図とPCBルーティングの設計同期を維持する方法について説明します。 多くの交差接続を持つPCB 導入 最適な部品配置は、交差接続ラインを最小限に抑える上で非常に重要です。しかし、交差を完全に避けることはできません。多数の交差接続があると、PCBのルーティングが非常に困難で時間がかかる作業になります。PCB設計者は、電気的に可能な限り、あるデバイスピンから別の適格なデバイスピンへネット割り当てを入れ替えることが一般的です。同様に、共通パッケージ内のサブパーツも交差接続を減らすために入れ替えることができます。 ピン入れ替えは、2つの異なる物理ピンのネットを入れ替えても設計の電気機能に悪影響を与えないという事実に基づいています。基本的な例としては、抵抗器の2つのピンがあります。抵抗器のピンには固有の極性がないため、交差を排除するためにピンを自由に入れ替えても、意図したとおりに機能します。 もう一つの実用的な例としては、特定の信号が各ピンに厳密に割り当てられているわけではない高ピン数コネクタがあります。コネクタ上の多くのピンを交換できる柔軟性を持つことで、いくつかのクロスオーバー接続を排除できる可能性があります。ピン交換に最も適したコンポーネントタイプは、適用可能な電圧バンク内でユーザーが定義可能なI/Oピンを持つFPGAデバイスであり、必要に応じて自由にピンを再割り当てできます。 サブパート交換では、共通のパッケージ内の類似部品が交換されます。例えば、LM6154クアッドオペアンプICには、単一のパッケージ内に4つの別々で同一のオペアンプがあります。したがって、オペアンプC(ピン8、9、10)をオペアンプA(ピン2、3、1)と交換して、同じ機能を維持しながらクロスオーバー接続ラインを排除できます。サブパート交換は時々「ゲート交換」と呼ばれ、SN74S02NクアッドNORゲートパッケージ内の4つの個別ゲートが自由に交換できることを意味します。 デバイスピンおよびサブパート交換は、PCBグラウンディングにおけるクロスオーバー接続の全体数を大幅に削減するのに大いに役立ちます。デバイスピンまたはサブパートの交換を成功させるには、どのピンが交換可能であるかを事前に定義する必要があります。さらに、プリント基板PCB設計内でピンまたは部品の交換が行われたら、回路図を更新して変更を反映させ、PCBレイアウトと同期させる必要があります。それらを同期させないと、致命的なエラーにつながる可能性があります。 ピンおよび部品の交換 ピンまたは部品の交換は、一般的に3つのステップで行われます:交換データの設定、ピンまたは部品の交換の実行、最後に、交換の更新と回路図の同期化です。 交換グループの設定 交換グループは、自由に交換できるピンを定義します。特定の交換グループ内の任意のピンは、同じグループ内の他のピンと交換できます。交換グループの定義は、通常、シンボルライブラリレベル、回路図レベル、またはPCBドキュメント内で一度だけ行う作業です。Configure Pin Swappingパネルを使用して、設計プロセスの任意の時点で任意のコンポーネントまたはコンポーネントインスタンスに対して交換グループを定義できます。差動ペアおよびサブパーツの交換に対しても同様に交換グループを定義できます。図は、交換グループが簡単に定義できることを示すスクリーンショットです。 バンク番号に従ってFPGA I/Oピンのグループを定義 ピンまたは部品の交換の実行 スワップグループが定義されると、ピンのスワップ、差動ペアのスワップ、またはサブパートのスワップをPCB設計プロセスドキュメント内で対話的に実行できます。対話的なスワップ機能を呼び出すには、選択した対話的なピンスワップに従って、ツール >
PCB設計ワークフローの幅と深さ Whitepapers PCB設計ワークフローの幅と深さ ルーティングプロセスは、レイアウト作業で最も時間がかかる作業のままですが、Altium Designerのインタラクティブルーティング技術により、密集したボードレイアウトの設計がはるかに容易になります。 現代のプリント基板は、幅広い技術的課題に対処する必要があります。PCB設計ソフトウェアには、設計エンジニアが生産性を維持しながら、新しい設計が完全に製造可能であることを保証するのに役立つツールが含まれている必要があります。先進技術を作成する設計者は、生産性を維持し、先進的な設計を作成するために、PCB設計ワークフローでインタラクティブルーティングツールに依存しています。最高のインタラクティブルーティング機能を探している場合は、業界唯一の完全統合PCB設計ソフトウェアプラットフォームであるAltium Designerの包括的な設計ツールスイートを使用する必要があります。 ALTIUM DESIGNER 単一のアプリケーションで完全な設計ツールセットを備えたプロフェッショナルなPCB設計プラットフォーム。 ほとんどの設計において、ルーティングはPCBレイアウトプロセスで最も時間がかかる作業です。多年にわたるPCBの技術進化に伴い、ルーティングソフトウェアもそれらの要件をサポートするために進化してきました。Altium Designerのインタラクティブボードレイアウトルーティング環境は、任意のトポロジーだけでなく、HDI/BGAブレイクアウト、フレックス、リジッドフレックス設計にも対応しています。 Altium Designerは、標準的なルーティング要件のサポートを提供するだけでなく、インタラクティブなルーティング機能を備えており、PCBを作成する際に複数のトレースを迅速にルーティングすることが容易になります。さらに一歩進んで、高速PCBの信号整合性をチェックし、外部シミュレータを使用せずにこれらを行うことができます。Altium Designerのインタラクティブなルーティング機能は、生産的なPCB設計ワークフローを作成するのに役立ちます。 オートルーターからインタラクティブルーティングへ 年月を経て、設計とレイアウトの際に生産性を保つための多くのツールが開発されてきました。オートルーターは、コンポーネント間のトレースを自動的に配置するための最もよく知られたツールの一つです。しかし、これらの機能はしばしばクリーンアップを必要とし、正しく使用されない場合には作業を増やすことになることがあります。 このため、デザイナーがルーティング結果をよりコントロールできるように、オートインタラクティブルーティング機能(単にインタラクティブルーティングとも呼ばれます)が開発されました。これらのツールは、ネットのグループに同じセットの設計制約を適用し、デザイナーはソースとロードの間のトレースのためのウェイポイントを設定できます。インタラクティブルーティングエンジンが隙間を埋め、ルーティングが完了するとクリーンアップが少なくなります。 インタラクティブルーティングで生産性を保つ 最先端のルーティングツールは、インタラクティブルーティングを使用して、プリント基板上のトレース群を迅速にルーティングします。インタラクティブルーティングは、高速デジタルインターフェースで通常使用されるような、ネット群に同じルーティング経路とルールを適用することで、生産性を維持するのに役立ちます。オートルーターと比較して、インタラクティブツールは結果に対するより多くの制御を提供し、クリーンアップが少なくて済みます。 インタラクティブルーティングは、設計者が自動化されたプロセスを制御できるようにするため、オートルーティングを大きく進化させたものです。 オートルーティングとインタラクティブルーティングの違いについてもっと学びましょう。 すべてのインタラクティブルーティング機能が同じように作られているわけではなく、一部の設計プラットフォームには単純なオートルーターを超えるものがほとんど含まれていません。Altium
Altium Need Help?