Layer Stackup Design

Implement any kind of layer stack for both rigid and rigid-flex PCBs.

Component Management Made Easy

Manage your components, get real-time supply chain data, access millions of ready-to-use parts.

リジッドフレキシブル基板設計

Filter
0 Selected Content Type 0 Selected 全て Software 0 Selected 全て Clear ×
Clear
0 Selected Content Type
0 Selected Software
リジッドフレキシブル基板設計の課題を克服する Thought Leadership リジッドフレキシブル基板設計の課題を克服する ウェアラブル電子機器には「大ヒット商品」となる資格があることに、疑問の余地はありません。 ウェアラブル機器の市場は、2016年は300億ドルになると予測されており、2026年には1,500億ドルまで成長するでしょう[1]。リジッドフレキシブルPCBの技術がなければ、これらの機器のほとんどが設計できません。つまり、エンジニアやPCB設計者は、ウェアラブルと「折り畳み型」の世界で設計、テスト、製造の専門家になる必要があります。 最も身近な製品は、おそらくスマートフォンとリンクしているスマートウォッチや、同じく手首に着用するフィットネストラッカーでしょう。しかし、これら民生品の他に、ウェアラブル機器は、医療機器や軍事用途に大いに進出しています。今では、リジッドPCBを組み込むことがほとんど不可能なスマート衣服も現れつつあります。それでは、市場に遅れないように、フレキシブル基板やリジッドフレキシブル基板をうまく設計するには、何が必要でしょう? ウェアラブル技術 - 何が問題なのか ウェアラブル機器は、小さくて、着ている人の注意をほとんど引かない必要があるのは、言うまでもありません。医療用ウェアラブル機器の場合、ユーザーは普通、他の人の注意も引きたくないと思います。何らかの方法で人体に取り付けるウェアラブル機器は、フレキシブル回路および非常に高密度のレイアウトを要求します。それだけでなく、多くの場合、基板の形は円形や楕円形であり、さらに変わった形の場合さえあります。設計者の観点から、これらのプロジェクトには、巧みな配置と配線が必要です。このように小さく高密度の基板では、リジッドフレキシブル設計に最適化されたPCBツールを使えば、変わった形状を非常に簡単に扱うことができます。 通常、リジッドフレキシブル設計では、コンポーネントを搭載したリジッド基板同士が、フレキシブル回路によって接続されている。フレキシブル回路を使用すると、製品筐体に収まるようアセンブリを曲げることができる 今日設計されるPCBの大半は、基本的に、回路を接続するためのリジッド基板です。しかし、PCB設計者にとって、ウェアラブル機器には、リジッド基板にはない以下のような問題点があります: 3Dパッケージに収まるよう、接続ポイントに負荷をかけずに、フレキシブル回路とそれぞれのコンポーネントを正確に配置する。 最終製品がそうであるように、アセンブリのリジッド部分とフレキシブル部分を統合してスタックアップを設計する。 フレキシブル回路を曲げることによる負荷をかけずに、製品筐体に収まるよう、リジッド基板とフレキシブル基板からなる最終アセンブリを形成する。 その上、設計が完了した後、リジッドフレキシブル製造業者を選定するという課題があります。これは、標準的なリジッド基板製造業者を見つけるより少し困難な場合があります。このようなさまざまな課題が加わった中、標準のリジッド基板設計では通常遭遇しない、よくある問題を回避しながら、リジッドフレキシブル設計の整合性をどのように確保しますか? リジッドフレキシブル基板設計の技術をマスターする Altium Designer®は、リジッドフレキシブル設計を扱う最も包括的なツール群を提供します。スタックアップを完全にマッピングし、 3Dでモデル化することができます。ティアドロップおよび信頼性向上技術を簡単に素早く使えます。さらに、製造出力データをフォーマットするためにODB++またはIPC-2581を選択し、設計意図を完全に伝達できます。 3Dモデリングを提供するPCB設計ソフトウェアによって、設計者は、PCBアセンブリがどのようにフィットするかを正確に把握できる Altium Designerの強力な技術を使用して、リジッドフレキシブル設計がもたらす多くの課題を克服する方法について、詳しくお知りになりたい場合は、今すぐ無料のホワイトペーパー
フレキシブルの今後: リジッドフレキシブル基板設計についての学習が要求される業界 Thought Leadership フレキシブルの今後: リジッドフレキシブル基板設計についての学習が要求される業界 フレキシブルなLEDストリップライト 時の過ぎるのが少し速すぎると感じたことはありませんか? 私は、ダイヤルアップインターネットの使用方法を憶えるのに四苦八苦していたのが昨日のことのように感じます。それが今では、最新技術のブロードバンドルーターの設定に苦労しています。現在の技術をマスターできたら、すぐに、次の大きな課題に取りかかる時期であり、すべてをまた最初から始める必要があると思っています。PCB設計者である皆さんにとっても、PCB設計の次の大きな課題であるフレキシブルとリジッドフレキシブルについて学習する時期です。急速に進化しつつあるPCBの分野でも、最も進化のスピードが速いのがフレキシブル基板です。IoT(モノのインターネット)、ウェアラブルな電子機器、フレキシブルディスプレイのすべてが、業界をリジッドフレキシブル基板へと推し進める要因となっています。皆さんにとっても、ため息をついていないでリジッドフレキシブルに目を向け、次世代PCBの設計基準の学習を始める時期なのだと思います。 フレキシブル基板の分野は急速に成長 新しい設計手法の学習は大変ですが、PCB市場は世界的に成長しており、いくつかの調査では、市場規模が 2016年の635億ドルから2021年には738億ドルまで成長すると予想しています。この成長のうちの大きな部分を占めると期待されているのがフレキシブル基板です。いくつかの報告書ではフレキシブル基板の市場規模が 2020年までに152億ドル、 2022年までには270億ドルに成長すると予測しています。私には、次世代PCBは気にならなくても収益は気になります。フレキシブル基板は、すでにリジッド基板を追い抜いています。2014年には、リジッド基板の販売額がわずかに減少したのに対し、 フレキシブル基板の販売額は増加しています。「適応か死か」というのは自然の法則ですが、PCB設計の世界も同じです。リジッド設計しかなかった過去にとどまっていたのでは取り残されてしまいます。 フレキシブル基板の推進要因となっている業界 フレキシブル基板が成長していることを認識するのも重要ですが、もう一つ、このトレンドの要因となっている業界を知ることも重要です。現在フレキシブル基板の大きな成長要因となっているのは、IoTとウェアラブル電子機器です。私は、近い将来、フレキシブルディスプレイも 新たな成長要因になってくると考えています。 デジタルカメラには、すでに多くのフレキシブル基板が使用されています IoT(モノのインターネット) 爆発的な成長の先頭に立っている電子部品業界の一つがIoTです。成長が非常に速いため、間もなく皆さんも IoTデバイス用のPCBを設計することが大幅に増えてくるでしょう。このような新しいIoT用PCBの多くは、フレキシブル基板であることが要求されると思われます。 その一例が、あの「スマートな」LEDストリップライトです。LEDストリップライトは、ユーザーが必要とする形状に合わせて曲げられるよう、長さ方向に沿ってフレキシブルでなければなりません。最終的には、髪の毛が乾いたかどうか教えてくれる「スマートタオル」とか、くしゃみをしたら「お大事に! 」と注意してくれる「コネクテッドティッシュ」とかがあったら、ユーザーはやっぱり欲しくなるのです。この種のデバイスには、性質上、フレキシブル基板が必要です。 フレキシブル基板は、小さい3D形状に合わせる目的で使用される可能性もあります。3D印刷によるPCBはまだやっと形が見え始めた段階ですので、ぴったりこないスペースを埋めるには多少の創意工夫が必要です。リジッドフレキシブルを利用した設計であれば、基板を折り曲げ、長方形や立方体や八面体にしてスペースに入れることも可能です。これは、平らな基板では考えられなかったことです。リジッドフレキシブル設計を学習する際には折り紙も憶える必要があるかも知れませんね。 将来的には、ほとんどのPCBがこのウェアラブルデバイスのようになってしまうかも知れません。
3DプリントされたPCBの試作によりPCB設計の事情がどのように変わっているか Thought Leadership 3DプリントされたPCBの試作によりPCB設計の事情がどのように変わっているか インクジェットプリンターと食品保存容器内のエッチング液を使って初めて基板の試作を作ったときのことを覚えていますか? プリント、アイロン転写、剥離、再プリント、アイロン転写、エッチング。これだけ時間をかけ、イライラしたのに、車に取り付けたラジオから聞こえてくるのは音楽よりもノイズばかりでした。お金と時間をかけて専門業者に試作を作成してもらっても、私の初めてのラジオから聞こえてきたホワイトノイズと同じくらいイライラする結果になる可能性があります。このラジオで使われていた技術はもはや時代遅れです。そして現在の試作作成技術も同じ道をたどる可能性があります。新しい3Dプリンターは、PCBの試作を革命的に改善するだけではなく、PCBの製造にも同じ改善をもたらします。 試作の将来 試作のできあがりを待つことが苦痛なのは当然です。テスト基板が届くまでの間に、試作を作成するための新しい手法を生み出せるかもしれません。幸い、誰かがすでに新しい手法を生み出してくれました。新しい3Dプリンターは、導電層をプリントするために、ナノ粒子技術を使ってインク内に金属を浮遊させます(私は化学者ではないのでその仕組みはわかりませんが)。通常の3Dプリンターと同様に、新しい3Dプリンターは、プラスチックやその他の素材のレイヤーをプリントして基板を形成することができます。3Dプリントは、設計プロセスを合理化し、機能的な試作を構築して、設計を最適化できます。コストも削減されます。 待ち時間の解消 - 試作になぜそれほど時間がかかるのかを説明することもできますが、私も含め誰もその理由には興味がないでしょう。興味があるのは、テストモデルをどれほど短時間で入手できるかです。3Dプリンターを使えば、試作は社内でその日のうちに作成できます。つまり、設計のモデル化とテストを同じ日に行うことができます。それを実感してください。新しい PCB設計ソフトウェア には、デジタルモデルの作成を可能にするシミュレーション機能が搭載されています。3Dプリンターを使えば、コンピューターモデルと同じくらいすばやく物理的なモデルを作成できます。 即日テスト - 読者の皆様が何を考えているかはわかります。おそらく、1日で試作を作成することはできても機能するわけがないとお考えでしょう。もちろんエラーには備えてください。 新しい3Dプリンター は、導電層をプリントできるので、基板を実際にテストすることができます! これらの導電層は、エッチングされた銅箔と全く同じようには動作しません。導体をプリントするために3Dプリンターで使用されているインクの特性についての詳細をプリンターメーカーにお問い合わせください。 終わりのない繰り返し - 大学時代、私が履修していたクラスで、全ての学生が試験に落ちました。教授は、繰り返しが最適化につながるとおっしゃって、再試験を行いました。教授のひとりがおっしゃったこの言葉を聞いて、学生達は宿題の問題を繰り返し解いていました。短時間で繰り返して試作を作成できれば、新しいデザインができるとすぐにそのデザインをテストすることが可能です。 立方体表面に施された表面実装技術(SMT)をご覧ください コスト削減
フレキシブルPCBとIoT: PCB設計をめぐる状況の急激な変化 Thought Leadership フレキシブルPCBとIoT: PCB設計をめぐる状況の急激な変化 クラウドへの接続はIoTの重要な機能です。​ PCB設計者として私は、自分の仕事の分野が過去20年間に根本的に姿を変えたと感じています。1990年代半ばに社会人になった私の初期のプロジェクトは、コンピュータとコンピュータ周辺機器の2つの主要分野のどちらかに集中していました。もちろん奇妙なステレオや時計付きラジオもありましたが、90%の時間はデスクトップPCのマザーボードとそれに類するものの開発に取り組んでいました。つまり、日常の設計作業では、広大な基板面積を扱っていました。しかも、全て2層基板でした。今とはまったく異なっていました。幸いにも、それは長くは続きませんでした。 現代まで話を進めると、私はまだコンピューター分野のPCBを設計しています。ビッグベージュボックスはもはやゲームの名前ではなく、全て IoTに関するものです。これらの組み込みコンピューターを通じて、特にいわゆる「スマートホーム」で使われるガジェットやデバイスのまったく新しいカテゴリーが開拓されました。コーヒーメーカー、湯沸かし、冷蔵庫、照明、腕時計、さらには車まで、この21世紀の技術を取り入れています。クラウド制御、リモートアクセス、機械学習(仕事から戻ってきたときにエアコンがONになる)などの機能を統合することで、本当に未来のように感じることが実現しつつあります。もちろん、私たちPCB設計者や電気エンジニアにとって、それは、簡単なファジー論理制御トースターよりもはるかに驚くべきことです。 IoT: 予想するよりも複雑なもの 明らかに、IoTデバイスのPCBを開発することは真の難題です。例えば、空間が非常に重視されます。ほとんどのIoT製品は、きれいでコンパクトなものが好まれる 消費者市場向けの小型家電、制御機器、ウェアラブル製品です。さらに、これらのデバイスの多くは、ハードウェアを考慮して設計されていません。むしろ、美しさが全てです。これは、ハードウェアのためには不規則な形の小さな空間しか使えないことを意味します。次に、性能の問題があります。プログラムを「ロードする」必要がある冷蔵庫や、YouTubeを表示させるのに多大な労力を必要とする スマートウォッチに大感激する人はいないでしょう。おそらくPCBには複数のICと少なくとも1つ(でなければ2つ)のSoCが搭載され、複雑な機能を全て処理します。最後に、信頼性を考慮する必要があります。これらのガジェットを購入する消費者は、「単に機能する」ことを期待します。これは、どんな設計を選択しても確固たる基盤が必要であることを意味します。以前のように「エラー」などの余地はありません。これを聞くと、設計者は不安になりますが、優秀な設計者の対処法に学ぶこともできます。 高性能を小さなパッケージに詰め込む必要があります。 フレキシブルPCB: IoTプロジェクトの最良の友 個人的な経験談で恐縮ですが、私が思い出した単純な2層基板は、現在では通用しません。小さなフォームファクターでは、十分な性能を発揮できないからです。「高密度多層基板にすればよいのでは」とお考えかもしれません。確かにそれは技術的には正しいのですが、私の経験では、そのような基板は価値よりも問題の方が大きいものです。多くのIoT製品(特にウェアラブル)は持ち運びを前提としているため、これらの基板は簡単に破損します。それだけでなく、そのような基板は収めるのに平坦な空間を必要とします。もっとよい答えがここにあります。IoTデバイスの全ての設計者 もそう思っているようです。フレキシブルPCBがIoTの空間に欠かせないものになり、以前とは違って非常に重視されるようになりました。 ポリイミド層で作られたフレキシブルPCBは、リジッド回路基板と同じ仕様に対応できます。長期信頼性を犠牲にしなくとも幅広い用途に応用できるため、 IoTアプリケーションで成功を収めています。さらに重要なことは、本質的に柔軟性が高いため、多くのIoT製品の小さくて特殊な形状にも簡単に収められることです。少なくないプロジェクトで、湾曲したフェースプレートとベースの背後の空間を利用できたことがあります。かさばるコネクタとリボンケーブルも、それほど使う必要はありませんでした。1つの共通設計を、さまざまなフォームファクターの複数のIoT製品に収めることもできます(私の上司はそのような設計が好みでした)。フレキシブルPCBとIoTはきわめて相性のよい組み合わせです。 最近まで、フレキシブルPCBの役割は大きくありませんでした。 写真は一般的なアプリケーションであるハードディスクドライブのモーターからメインボードへの接続です。 大小の非常に多くの企業がIoT市場の獲得を目指しているため、近い将来、多くの設計者がIoTプロジェクトに取り組んでいることでしょう。もちろん、私のように懐疑的な設計者なら、フレキシブルPCBを設計するのは不安かもしれません。IoTプロジェクトに関連する既存の課題を考慮すると、物事を より複雑にする必要はないとお思いのことでしょう。しかし、まさに「鶏と卵の問題」のように、IoT市場の拡大がフレキシブルPCBの性能を向上させ、同時にフレキシブルPCBがIoT市場を拡大しました。約8年前、あるベンダーに会った際、フレキシブルPCBのプロトタイプを見たことを覚えています。明らかに非常にシンプルでした。今日では、SMT、マイクロビア、多層基板、BGA
3Dモデリングが電子設計をいかに永遠に変えたか Thought Leadership 3Dモデリングが電子設計をいかに永遠に変えたか 1990年代後半から2000年代初頭にかけての電子機器の設計は、今日とは大きく異なる体験でした。古いPCB設計は、しばしば不動産に関して制限がなかったものです。また、現代の設計が抱えるような多くの機械的制約もしばしばありませんでした。確かに、電子部品は15年から20年前に比べて今日はずっと小さくなっていますが、それらが収まるべき機械的なエンベロープも同様に小さくなっています。 今日では、PCBの機械的側面とそれが統合されるシステムの両方を徹底的に調査することが不可欠です。もはや、一方を行うことなく他方を行うことはできません。3Dモデリングは、設計者がPCB設計の機械的側面を調査するのにどのように役立っているのでしょうか? 3Dモデリング Altium流 Altiumは、Altium Designer® 統合開発プラットフォーム内で3D統合を利用可能にすることにより、PCB設計ソフトウェアに3D技術を導入した最初の企業でした。そして、彼らが言うように、残りは歴史です。Altium Designerは現在、STEPのような機械CADファイルのインポートとエクスポートが可能です。また、Altium DesignerとSOLIDWORKS®との間で直接的な相互作用を作り出すために努力しており、ParasolidモデルまたはSOLIDWORKS®部品モデルを使用して、実際の電気的および機械的な相互作用を可能にしています。ここに、私たちの3D技術が電子設計を永遠に変えた方法のほんの一部を紹介します: リジッドフレックス設計 Altium Designerはリジッドフレックス設計をサポートし、機械的な適合性を確保するために、完全なリジッドフレックス組み立てを3Dでモデル化することができます。また、最終的な向きでのリジッドフレックスの3Dモデルをエクスポートすることも可能です。 Altium Designerでの3Dリジッドフレックスモデリング 3Dモデルからの基板形状の作成 電気エンジニアは、機械的なSTEPモデルをAltium DesignerのPCBにインポートすることができます。このモデルには、機械CADパッケージで機械エンジニアによって作成された、必要なPCB基板の形状とスケール、基板のカットアウト、フィレット、取り付け穴が詳細に記載されています。電気エンジニアがこれを手に入れたら、3Dモデルから直接PCB基板の形状を作成し、すべての機械的要件に適合することを確認できます。 3DでのPCBフットプリントのモデリング 3Dモデルは直接PCBフットプリントに添付され、PCB内のフットプリント上で必要に応じて位置決めされます。このリンクは、クリーンな作業設計を確保する上でおそらく最も重要なステップです。フットプリントがPCBレイアウトに配置されると、3Dで表示され、3D DRC干渉チェックに使用することができます。
Altium Need Help?