リジッドフレキシブル基板設計

フレキシブルおよびリジッドフレキシブルプリント基板技術は、軽量化と省スペース化を実現します。今日の小型軽量のコンシューマーエレクトロニクス製品は、リジッドフレキシブル技術を用いて作られることが多いですが、リジッドフレキシブル基板設計を成功させるには多くの課題があります。フレキシブル電子機器やウェアラブル設計のための基板とリジッドフレキシブル設計については、ライブラリのリソースをご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
リジッドフレキシブル設計の課題 リジッドフレキシブル設計の課題 1 min Whitepapers 摘要 リジッドフレキシブル基板テクノロジーには、重量と容積の削減や、耐久性と信頼性の向上の点で、非常に大きな利点があります。今日の小型軽量の消費者向け電子機器を実装する場合、リジッドフレキシブルテクノロジーは最良の方法です。ただし、リジッドフレキシブル基板設計を正しく行うには、多くの課題があります。このホワイトペーパーでは、リジッドフレキシブル設計のいくつかの主要な考慮事項について解説します。 はじめに リジッドフレキシブル基板は、最初に軍事や航空宇宙業界で数10年前に使用されたテクノロジーで、長い実績があり、十分に理解されています。 今日では、ウェアラブル、医療機器、モバイルワイヤレス機器など、現代的な小型のフォームファクター、高い耐久性、軽量の電子機器に理想的なソリューションとして認知されています。しかし多くのPCB設計者は、リジッドフレキシブル基板の設計を最初に行うとき、いくつかの課題に直面します。 リジッドフレキシブルの製造と実装のコストはどの程度なのか? 種類の異なるリジッドとフレキシブル部が、どのように1つのPCBアセンブリとして記述されるのか? リジッドとフレキシブルで異なる材料とレイヤーの具体的な情報をどのように管理し、製造業者に伝達するのか? 可動範囲や重要な折りたたみ状態をどのようにモデル化し、検証するのか? フレキシブル領域内の配置と配線は、従来のリジッド基板とどのように異なるのか? リジッドフレキシブル基板設計には、これらの疑問に加えて、更に多くの疑問が付きまといます。 コスト従来のリジッド基板製造と比較して、リジッドフレキシブルには追加の材料と、より複雑なプロセス手順が必要なため、本質的に製造コストが増大します。これらの追加製造コストは、BOMコストの低減(コネクタやケーブルのコンポーネントが少なくなる)、組み立てコストの低減(手作業での配線や組み立てが少なくなる)、製品の信頼性の向上などによって埋め合わせできる可能性があります。(※続きはPDFをダウンロードしてください) 今すぐ Altium Designerの無償評価版をリクエストして、世界最高のPCB設計ソリューションをお試しください! 記事を読む
ウェアラブル機器の課題に対応する ウェアラブル機器の課題に対応する 1 min Whitepapers ウェアラブル電子機器には「大ヒット商品」となる資格があることに、疑問の余地はありません。ウェアラブル機器の市場は2016年は300億ドルであると予測されており、2026年には1,500億ドルまで成長するでしょう。リジッドフレキシブル基板の技術が無いと、これらの機器のほとんどは、ま ったく設計できません。つまり、エンジニアやPCB設計者は、ウェアラブルと「折り畳み型」の世界で設計、テスト、製造の専門家になる必要があります。 最も身近な製品は、おそらくスマートフォンとリンクしているスマートウォッチや、同じく手首に着用するフィットネストラッカーでしょう。しかし、これらの民生品の他に、ウェアラブル機器は、医療機器や軍事用途に大いに進出しています。今では、リジッドPCBを組み込むことがほとんど不可能なスマー ト衣服も現れつつあります。このホワイトペーパーでは、ウェアラブル機器のユニークな点は何か、また、フレキシブルやリジッドフレキシブル基板の設計に何が必要かについて考察します。 機能が複雑になるとPCBも複雑になる ウェアラブル機器は、小さくて、着ている人の注意をほとんど引かない必要があるのは、言うまでもありません。医療用ウェアラブル機器の場合、ユー ザーは普通、他の人の注意も引きたくないと思います。少し前まで、「ウェアラブル医療機器」はかなり大きく、多くの場合、ベルトマウントやショルダ ーストラップを必要としていました。 今日、ウェアラブル機器は、さまざまな場所にあり、腕時計タイプのフィットネストラッカーが、主要ウェアラブル製品の1 つになっています。これらの機器は、センサーを使用して、 複数のパラメーターを監視し、フィットネス関連のパラメーターを計算しています。しかし、それらは、このように高度化されている一方で非常に小さく、フレキシブル基板の技術を必要とします。スマートウォッチには、設計スペースがもう少しありますが、機能が複雑になるにつれて、このスペースもすぐに使い果たしてしまいます。 ウェアラブル医療機器は、体の特定の部分をモニターするために着用する、小さく目立たない「パッチ」へと進化しました。それらは、完全に自立型であり、図1に示すように、 小さな場所に電極、接着剤、充電池、知能を備えています。 リジッドフレキシブル基板の設計 何らかの方法で人体に取り付けるウェアラブル機器は、フレキシブル回路および非常に高密度のレイアウトを要求します。それだけでなく、多くの場合、基板の形は円形や楕円形であり、さらに変わった形の場合さえあります。設計者の観点から、これらのプロジェクトには、巧みな配置と配線が必要です。このように小さく高密度の基板では、リジッドフレキシブル設計に最適化されたPCB設計ツールを使えば、変わった形状を非常に簡単に扱うことができます。 今日設計されるPCBの大半は、基本的に、回路を接続するためのリジッド基板です。しかし、PCB設計者にとって、ウェアラブル機器には、リジッド基板にはない問題点がいくつかあります。(※続きはPDFをダウンロードしてください) 今すぐ Altium Designerの無償評価版をリクエストして、世界最高のPCB設計ソリューションをお試しください! 記事を読む
8つのフレキシブル基板の利点 8つのフレキシブル基板の利点 1 min Blog 私がキャリアをスタートしたばかりの頃、フレキシブル基板のアプリケーションは私たちの想像力によって制限されるだけであると言われたことがあります。そのことを思い出しては、このコメント以上に同意できることはないと考えさせられます。こういった「あぁ!」という瞬間の大部分は、私たちがさまざまなサンプルの集まりをやり取りしているときに起こり、特定の形状や柔軟な考え方が新しいアイデアを生み出します。 私の仕事の中で気に入っていることの1つは、パッケージング問題を解決する方法を考え出そうとしている設計者またはエンジニアのグループと仕事をしているときの魔法の瞬間です。多くの場合、フレキシブル基板のサンプルを見た後で、問題の解決に役立つ可能性があるというアイディアで設計者の目が輝き、その瞬間からブレーンストーミングが始まります。このようなプロセスの一部になるのは非常に楽しいです。 私がフレキシブルとリジッドフレキシブル基板で設計することに喜びを感じるのと同じくらい、フレキシブル基板を使わない方を好む人もいます。もちろん、そのためらいは理解できます。新しい技術には常に学習曲線があります。学ぶべき新しい材料、新しいデザインルール、さらには新しい製作者を見つける必要があるかもしれません。それは恐ろしいことです。そのため、私はパッケージの問題を解決するためにフレキシブルとリジッドフレキシブル基板を使用することによる上位8つの利点について試してみることにしました。この試みは、新しいアイデアを刺激するか、またはフレキシブル基板を取り入れることを検討する動機を提供するでしょう。 フレキシブル基板の利点とは? 1)パッケージングの問題を解決すること:私はこれが最も明白だと思います。材料はコーナーのまわりで曲げたり、折ることができ、三軸の関係を提供し、そして分離された部分がありません。電子部品および機能要素は、フレキシブル基板を折り曲げ、接続するために形成することができ、製品内の最適な位置に配置することができます。ここが想像力を働かせるところです! 2)必要なスペースと重量の削減:SWaP、つまりスペースの重さとパッケージングは、プリント基板設計において引き続き重要なトピックです。フレキシブル基板は、かさばるワイヤーとはんだ接続を排除することができ、コンポーネントと構造によっては、重量とスペースを最大60%節約し、パッケージサイズを大幅に縮小することができます。フレキシブル基板の材料は、従来のリジッド基板よりも薄型です。 3)組み立てコストの削減:大きなワイヤーとケーブルを交換することで、配線を削減または排除します。これにより、組立の人件費だけでなく、ワイヤーのコスト、複数の発注書を作成するためのコスト、受け取りおよび検査、キッティングも削減できます。これはさらに詳しく調べる価値があります。 4)動的屈曲を容易にする:適切に設計された場合、フレキシブル基板は数百万の屈曲に耐えることができます。ディスクドライブは、1000万〜1億のフレックスサイクルを伴う一般的な例です。もう一つの良い例は、ノートパソコンのヒンジです。これらのフレキシブル基板は、コンピューターの耐用年数にわたって何万という屈曲に耐えることができます。 5)熱管理:ポリイミド材料は高熱用途に耐えることができ、薄いポリイミドはより厚い、より熱伝導性の低い材料よりもはるかによく熱を放散します。そのため、より高い電力、より高い周波数の設計、またフレキシブル基板の設計において著しい成長を見ることができます。 6)製品の外観を向上させる:ユーザーが製品の機能要素に触れると、外観が決定に影響を与えることは事実です。見た目が決定に影響を与えたお気に入りの例は、手のひらサイズの焼灼ツールが診療所で設計、使用されていたお話です。患者は、焼灼ツールの接続に使用されたワイヤーを見ることができたのです。これは、患者の手術に対する信頼度を下げる結果につながりました。そのワイヤーは非常に単純なポリイミドフレキシブル基板で再設計され、手術に対する信頼は著しく向上しました。機能性に違いはありませんが、なめらかなフレキシブル基板はアンケート調査の結果、はるかに高い得点を記録しました。 7)生体適合性:ポリイミド材料は生体適合性に優れており、そのために医療用途とウェアラブル用途の両方で通常使用されています。先端技術は銅導体を金導体に置き換えることもでき、生体適合性のある選択肢を提供します。 8)信頼性の向上とオペレーションミス発生の減少:リジッド基板とワイヤケーブルをフレキシブルまたはリジッドフレキシブル設計に置き換えると、必要な相互接続の数とレベルが減り、システム設計を大幅に簡素化できます。接続は回路アートワークによって制御され、人的ミスの可能性を排除します。 リジッド基板 vs フレキシブル/リジッドフレキシブル基板 ワイヤー、ケーブル、そしてリジッド基板はよく知られた解決策であり、常に設計を始めるのに最適なスタート地点になるでしょう。フレキシブル基板についてもっと真剣に考え始める必要があるのは、従来の方法では設計上、そしてパッケージ上の制約をまったく解決できない場合です。 それは、つま先を水に浸して水に慣れるように、単純な フレキシブル基板から始めて、思った通りのフレキシブル基板設計ができるケースかもしれません。あるいは、いきなり両足で飛び込むような、マイクロビアで多層フレキシブル基板の設計に取り組むような難解なケースかもしれません。いずれのケースにしても、私たちは設計者にサポートを提供しています。 こちら をクリックして詳細をご連絡ください。 記事を読む
リジッドおよびリジッドフレキシブルPCBのレイヤスタックアップ リジッドおよびリジッドフレキシブルPCBのレイヤスタックアップ 1 min Thought Leadership 多層PCBの構築は、レゴで建物を作るのと似ています。部品は全て簡単に組み合わせられますが、設計としてまとめるには、従うべき指示があります。最近は、シングルレイヤや、トップレイヤとボトムレイヤの組み合せは、最も単純なPCBでのみ使用されます。マルチレイヤのPCBは、今や例外ではなく標準です。製造業者は最高30層のPCBを組み立てることができます。それらの基板におけるレイヤスタックアップの方法は、実際に適用するさまざまな場面で重要です。 PCB設計者は、回路基板の作成方法における変化に対応すべく設備を整える必要があります。PCB設計者の主な設備とは何でしょうか? 言うまでもなくCADツールです。どのようなプリント基板も、後方支援のため、強力にサポートしてくれるPCB設計ソフトウェアが必要になります。これは、デザインルールの把握がやや難しい、フレキシブルおよびリジッドフレキシブル回路ではなおさらです。レイヤスタックに振り回されず、今後もフレキシブル回路基板のプリントを円滑に行いましょう。 マルチレイヤのスタックアップ方法 理想の世界では、レイヤスタックアップの方法は、EMIおよびクロストークを完全にブロックするようにトレースとGNDプレーンを配置でき、フレキシブルおよびリジッドフレキシブル設計に適応できるはずです。例えばルームの温度を過度に熱することはないでしょう。明らかにそれは無理な注文です。あらゆる要件を完璧かつ同時に満たすことのできるスタックアップの方法はありません。 ピン密度が高い基板は一般に、より多くの信号層を必要とします。また、標準的なPCBに含めるべきレイヤの数に関する一般的なガイドラインがあります。レイアウト中の配線密度に応じて、いくつかの信号層は不要で削除可能であることに気付くかもしれません。適切なレイヤ数が決まったら、EMIとクロストークへの影響に注意しながらレイヤを配置する必要があります。 典型的なマルチレイヤスタックアップは、信号層とパワー/GNDプレーンが交互に配置されます。各レイヤは、絶縁体コアまたはプリプレグによって仕切られます。推奨されるスタックアップの配置は、基板のレイヤ数によって異なりますが、レイヤ間のEMIとクロストークを抑制するため、上記のガイドラインを必ず守ってください。熱問題に対応するには、マルチレイヤ基板にもかかわる可能性のある設計上の考慮が必要です。 アナログおよびデジタル要素を持つデバイスは、マルチレイヤスタックアップに別々のGNDレイヤを使用する必要があります。2つのGNDプレーンは1点でのみ接続してください。同じことが、アナログおよびデジタル信号層にも当てはまります。アナログおよびデジタル信号層を分けて1点でのみ接続することは、ノイズ結合を回避できるよい方法です。ほかに、GNDにシングルレイヤを使用してGNDプレーンをデジタル部分とアナログ部分に分割する方法があります。 フレキシブル回路基板では、配線はそれほど問題にする必要はありません アナログおよびデジタルの信号層をそれぞれのGNDプレーンで分けるのは、 EMIを回避するよい方法です。アナログおよびデジタル信号層の間にGNDプレーンを配置すると、2つのレイヤの間に効果的なシールドを作ることになります。アナログGNDプレーンはアナログ信号層に隣接して配置する必要があります。デジタル信号層も同様です。これにより、各信号層は、それぞれのGNDプレーンにリターン電流のみを誘導します。 リジッドフレキシブルスタックアップ リジッドフレキシブルPCB設計にいったん取り組んだら、リジッド基板と同様のスタックアップを使用してフレキシブルリボンを定義する必要があります。フレキシブルリボンは、それが接続する基板より薄く、リジッド基板の内側のレイヤと同じスタックアップ構造でなければなりません。フレキシブルリボンは通常、基板間の信号を伝達する必要があります。また、GNDリターン接続が必要です。 パワープレーンまたはGNDプレーンをフレキシブルリボンを越えて拡張するつもりであれば、クロスハッチ銅箔を使用します。クロスハッチにより、純銅箔フィルムや銅箔での柔軟性が向上します。クロスハッチ銅箔は、フレキシブルリボンの信号層に シールドが必要な場合も使用する必要があります。 フレキシブルリボンに直接コンポーネントを配置する予定がない場合は、そのリボンのカバーレイの下に信号層が直接配置されている必要がありません。カバーレイの下に信号層があれば、SMTコンポーネントをリボンに直接配置できます。これが一般的な設計方法になりつつあります。 半田ランドは、カバーレイの信号層に直接配置される必要があります。カバーレイは、SMTコンポーネントが信号層にアクセスできるようパンチで穴が開けられる必要があります。必ず、自分の設計に対応してもらえることを 製造業者に確認してください。これらの機能やコンポーネントを曲げ領域に配置することは常に避け、コンポーネントの長手方向が曲げと平行になるようコンポーネントを配置します。 SMTコンポーネントはフレキシブルリボンにより効率的に管理できます リボンにコンポーネントを配置する別の方法として、ボタンメッキがあります。信号層はスタックアップのカバーレイの下に配置される必要があります。カバーレイにパンチで開けられた穴は、信号層へのアクセスにも使用されます。スルーホールビアが実装パッドに配置され、ストラクチャは特定の厚さまでメッキされます。ビアの穴が開いたままの場合は、スルーホールコンポーネントをフレキシブルリボンに配置できます。 記事を読む
リジッドフレックスのコマンド設定とレイヤースタック設計 リジッドフレックスのコマンド設定とレイヤースタック設計 1 min Thought Leadership PCB設計に首を突っ込むと、自宅の電子機器が実際にどのように機能しているかに気づき始めます。DVDドライブからノートパソコンのモニターまで、折りたたむことができるほぼすべてのものが、リジッドフレックスPCBによって可能になっています。 リジッドフレックスPCB設計は、それを作成するために使用しているソフトウェアによっては難しいものになることがありますが、設計の終わりには、あなたのプリント基板は体操選手のように曲がったり柔軟になったりします。 最初に、リジッドフレックスPCBは他のPCBと同じように見えるかもしれません:回路、銅、ビア;しかし、回路の厚みに入ると、ボードのフレックスPCB部分とリジッドPCB部分の両方を通して作業できる信頼できるソフトウェアを持っていることが望ましいです。 現在では、多層カウントが4から30に達し、フォームファクターがより専門的で要求が厳しくなるにつれて、リジッドフレックスボードは電子機器により頻繁に現れます。設計を満たすために必要な回路は、非常に難しいものになるかもしれません。頭をかかえたり、レイヤーを手作業で設定したりしないでください。統合設計環境で作業するとき、レイヤースタックを定義することは簡単で正確です。 レイヤースタックアップ、リボンデザイン、およびルーティング リジッドフレックス回路は、フリップフォンに限定されるものではありません。多くのデバイスでは、リジッドフレックスリボンを使用して、単一のデバイス内の複数のボード間で接続を行います。奇妙な形状の電子パッケージや、ラップトップのような折りたたみコンポーネントを持つデバイスは、通常、リジッドフレックスボードを使用して、一つのコネクタを通じて高密度の接続をルーティングします。これは、乱雑な銅線の束を使用するよりも優れています。 リジッドフレックス回路を設計する際には、常に製造業者に相談し、その製造能力を評価するべきです。設計が製造ラインから実際に出てきて、要件に従って動作することを確認したいと思います。リボンフレックスが静的か動的かを決定し、リボンが多層ルーティングを必要とするか、およびプリント基板間でリボンをどのように接続したいかを決定する必要があります。 一部のメーカーは、その能力に応じて構築された事前設定されたスタックアップファイルを送信します。PCB設計ソフトウェアは、これらのスタックアップファイルをインポートして再利用できるようにするべきです。これにより、リジッドフレックス設計がメーカーの要件を満たし、製造に移行する前に再設計を防ぐのに役立ちます。これはまた、大きな時間の節約になり、回路とPCBの推測作業をなくすのに役立ちます。 リジッドフレックス設計を行うには、直感的なスタックマネージャーと強力なルーティングツールを備えたPCB設計ソフトウェアパッケージが必要です。スタックマネージャーは、PCBの各リジッド部分とフレックス部分での材料配置を定義します。レイヤーを定義し、フレックスPCBが配置されたら、ルーティングツールはリジッドボード上での作業と同じくらい簡単にフレックスリボンを越えてルーティングできるようにする必要があります。 Altiumでのリジッドフレックス設計のためのレイヤースタックアップ 問題の原因を知る フレックススタックアップを定義するためにスタックアップマネージャーで作業するとき、スタックマネージャーは必要なコントロールをすべて単一のウィンドウに含む直感的なインターフェースを使用するべきです。スタックアップを複数のウィンドウに分けると生産性が低下し、スタックアップを定義するための必要なコマンドを見つけるのが難しくなります。スタックアップを構築するとき、それは実際にあなたが構築しているデバイスに似ているべきであり、トップとボトムのカバーレイの奇妙な配置ルールを課すべきではありません。 同じ問題がグラウンドとパワーレイヤーにも適用されます。ほとんどのリジッドフレックスボードは、PCBの別のセクションであったかのように、フレックスリボンを越えてパワーとグラウンドが広がっています。これは、再び、スタックマネージャーがその真価を示す場所です。スタックアップを構築するとき、残りのスタックアップと同じウィンドウでパワーとグラウンドレイヤーを定義できるべきです。 フレックスゾーンが外部コネクターなしでPCBのリジッド部分に接続する場合、トランジションゾーンを定義する必要があります。奇妙なことに、いくつかのソフトウェアプログラムでは、このゾーンを定義するための特別なプロセスが作成されています。実際には、トランジションゾーンはフレックス領域とは少し異なるスタックアップに過ぎず、この領域を定義するために独自のコマンドセットが必要になるべきではありません。 リジッドフレックス設計の正しい方法 リジッドフレックス設計は、各ボードとフレックス領域のレイヤースタックを定義することから始まり、直感的なレイヤースタックマネージャーが必要です。ボードとリボンの各レイヤー、オーバーレイとポリイミド層を定義し、これらの層が互いにどのようにインターフェースするかを定義する必要があります。リジッド領域とフレックス領域を定義するのに5つの異なるウィンドウと数十回のクリックを要するべきではありません。これらすべては、必要なコマンドとオプションを含む1つの簡単にアクセスできるウィンドウで行うべきです。 リジッド部分とフレックス部分のレイヤースタックを定義したら、PCBレイアウト内で直接フレックス領域を定義できるようになるはずです。ボードの全体的なアウトラインを定義したら、ボードの各部分にレイヤースタックを迅速に割り当てることができるはずです。リボンを横切る接続のルーティングは、単一のボード内や任意の回路内のルーティングと変わらないはずです。 スタックアップを定義し、コンポーネントを配置し、ボードと回路間の接続を定義したら、徹底的な設計ルールチェック機能を使用して設計を監査できるはずです。ボードにとって不可欠なルールをカスタマイズできるはずであり、設計ルールチェック機能はエラーや競合を読みやすいウィンドウで表示するはずです。 設計の検証は、設計ルールに対するチェック以上のものを必要とし、シミュレーションを通じて問題を診断し、3Dビューアーでフォームファクターを検証することが求められます。統合環境で作業することで、外部プログラムに移動することなく、設計のためのシミュレーションを直ちに構築して実行できます。リジッドフレックスボードのフォームファクターとクリアランスは、デバイスの3Dビューを使用して検証でき、異なるプログラムにエクスポートすることなくすべて行うことができます。 統合設計環境における3Dビューアーの可能性 記事を読む