Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Courses & Certificates
Training Previews
On-Demand
Instructor-Led Trainings
大学・高専
Programs
Educator Center
Student Lab
Altium Education Curriculum
オンラインストア
Search Open
Search
Search Close
サインイン
回路設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
Unparalleled Schematic Capture
Easily design schematics of any complexity.
Learn More
回路設計と回路図入力
Overview
All Content
ウェビナー
Filter
0 Selected
Content Type
0 Selected
全て
Software
0 Selected
全て
Clear
×
Clear
0 Selected
Content Type
全て
7
ニュースレター
3
ウェビナー
1
ホワイトペーパー
3
0 Selected
Software
全て
12
Altium Designer
11
Concord Pro
1
PCB設計に最適なキャパシタ回路シミュレータ
コンデンサは、集積回路やPCB設計において基本的な要素であり、少なくとも1つのコンデンサを含まない回路を思い浮かべるのは難しいです。コンデンサの振る舞いと回路内の他のコンポーネントとの相互作用は、設計が意図した通りに動作することを確認するために一般的にシミュレーションする必要があります。 コンデンサは、回路内での使用に応じてフィルタリング、ブロッキング、電力安定性の振る舞いを提供でき、コンデンサ回路シミュレータは設計の安全性と有効性を検証するのに役立ちます。 最高の回路設計ソフトウェアには、コンデンサRC回路やその他の一般的な回路に対して過渡解析を実行できるSPICEパッケージが含まれています。Altium Designerは、これらの回路シミュレーションツールをはじめ、多くの機能を単一のアプリケーションで提供し、コンデンサ回路のシミュレーションを作成して実行することを容易にします。 回路設計を検証したら、業界最高のECADツールで高品質のPCBレイアウトを作成するために必要なすべてが揃っています。 ALTIUM DESIGNER 強力なSPICEシミュレーションエンジンとプロフェッショナルな設計者向けの完全なCADツールセットを備えた統合PCB設計アプリケーション。 PCB設計において、広範な振る舞いを説明するために使用できる3つの基本的な線形回路要素があります。それらは、抵抗器、コンデンサ、およびインダクタです。これらの回路要素は、電子デバイスで様々な有用な機能を生み出すために創造的な方法で組み合わせることができますが、設計が設計者の意図する通りに動作することを保証するためには、シミュレーションツールが必要です。特にRC回路のようなコンデンサ回路は、電子設計において広範な振る舞いを説明するために基本的であり、広く使用されています。 コンデンサ回路設計を作成したら、設計が意図した通りに機能することを確認するために、コンデンサ回路シミュレータが必要になります。これらのシミュレーションプログラムはSPICEエンジンに基づいており、設計者が物理的なPCBレイアウトを作成する前に回路シミュレーションを実行することを可能にします。 適切な電子設計ソフトウェアを使用すれば、コンデンサ回路シミュレーションで迅速に計算できるいくつかの重要な指標があります。 コンデンサ回路シミュレーション方法 SPICEに基づく回路シミュレーションプログラムは、反復アルゴリズムを使用して微分方程式を解くことによって動作します。これらは周波数領域または時間領域で実行されることができ、最高の回路設計ツールは追加の分析を実行して回路を理解するのに役立ちます。コンデンサシミュレーションでは、計算されるべきいくつかの特定の点があります: 過渡解析によるRC時定数の決定 フィルタリング動作を理解するための伝達関数解析 高速/高周波回路での整合を保証するためのインピーダンス計算 Altium DesignerのようなPCB設計アプリケーションは、設計者がコンデンサシミュレーションを含むあらゆる種類の回路シミュレーションを実行できるように、回路設計ツールの完全なセットをスキーマティックエディターに含んでいます。電圧源や電流源を使ってコンデンサ回路を中心に大きなシステムを構築するのは簡単で、Altium Designerの直感的なインターフェースを使用して、電流やインピーダンスなどの重要な電気的値を計算できます。 コンデンサ回路シミュレーションの目的
Altium 365によるPCBフットプリントの作成と再利用
多くのコンポーネントは標準化されたパッケージで提供されますが、すべてのコンポーネントメーカーがPCBライブラリにCADモデルや回路図シンボルを提供しているわけではありません。これらのCADモデルは、PCBレイアウトにおいてピンの位置、シルクスクリーン情報、重心、パッドがどのように表示されるべきかを示します。既存のPCBフットプリントを新しいコンポーネントに適用する必要がある場合、PCBコンポーネントの作成は繰り返しになりがちです。 Altium Designerのコンポーネント作成ツールとAltium 365の統合クラウドストレージ機能を使用すると、既存のコンポーネントデータを新しいコンポーネントに迅速に再利用できます。コンポーネントのバリアントを生成する際にデータを繰り返しインポートする必要がなく、このデータを設計チームの誰にでも即座にアクセス可能にすることができます。ここでは、Altium 365リポジトリに保存された既存のコンポーネントデータを新しいコンポーネントに迅速に再利用する方法を紹介します。 ALTIUM 365
®
Altium Designer
®
および人気のある機械設計ツールと統合された、電子データ管理およびコンポーネント管理プラットフォームです。Altium 365では、PCBフットプリントの作成と再利用が簡単です。 ほとんどの設計ツールでは、コンポーネントの再利用が容易ではありません。Altium 365を使用すると、既存のPCBフットプリントを新しいコンポーネントに適用するために、繰り返しダウンロードとアップロードのプロセスを経る必要がありません。多くのコンポーネントには複数のバリアントがあり、しばしば同じパッケージとピン配置を持っています。コンポーネントメーカーがお客様のために部品モデルを作成している場合、またはボードハウスで必要なモデルが見つからない場合、既存のCADモデルをコンポーネントに再利用することで、ライブラリを作成するために必要な時間を大幅に削減できます。コンポーネントを迅速に再利用したい場合は、これらのタスクをすべて、そしてそれ以上のことをAltium DesignerとAltium 365で行うことができます。 クラウドでのPCBフットプリントの作成と再利用 コンポーネントを再利用する古い方法は、PCBフットプリントと回路図シンボルのライブラリ間でデータを手動でコピーすることを必要としました。コンパイルされたライブラリは、その後、メール、独自の管理ツール、またはデータベースで検索することによって共有する必要がありました。Altium 365は、共有コンポーネントを安全なクラウド環境に保存し、Altium 365のWebインスタンス内の異なるコンポーネントとプロジェクトへのアクセスを制御することができます。 PCBフットプリントの作成と再利用の開始 TRANSLATE
TRANSLATE:
Altium Designerにおけるリチウム鉄リン酸塩PCBバッテリーのためのパワーエレクトロニクス
パワーエレクトロニクスは、現代生活を可能にするシステムの膨大なリストを包含しています。自動車システムから電力配分システムまで、パワーエレクトロニクスは電気システム全体での電力の流れを制御し管理する責任を持っています。将来的に代替エネルギーシステムがより人気になることが予想されるため、エンジニアやデザイナーはパワーエレクトロニクスシステム用の適切なPCB設計ソフトウェアを必要としています。 パワーエレクトロニクスシステム用の設計ソフトウェアには、大規模なコンポーネントライブラリへのアクセスと管理機能、およびPCB内の電力配分とホットスポットとのリンクを示すツールが含まれている必要があります。Altium Designerを使用すると、リン酸リチウム電池のパワーエレクトロニクスのすべての側面を制御できます。これらの機能すべてに、単一のインターフェースでアクセスできます。 ALTIUM DESIGNER
®
パワーエレクトロニクスおよび配電アプリケーション用の設計ツールを備えた統合PCB設計パッケージ。 化石燃料は時代遅れになりつつあり、ソーラーファームや風力ファームのような代替エネルギー源に徐々に置き換えられています。エネルギー管理は研究文献の重要なトピックであり、学者たちは電力生成の中断中にエネルギーを蓄えるための多くの方法の使用を真剣に探求しています。これらの方法には、リン酸リチウム(より具体的にはLiFePO4)電池アレイの使用が含まれ、これにより生成が低下したときにエネルギーをグリッドに戻すことができます。 リチウムイオン電池は、電力貯蔵システムに限定されていません。これらの電池は、モバイルデバイス、電気自動車およびハイブリッド車の電池、および充電式電池を必要とするその他の電子機器に見られます。これらの電池の充電システムは、エネルギー貯蔵用の充電システムと同様の要求を満たす必要がありますが、規模は小さいです。 PCB設計におけるリチウムリン酸塩について知っておくべきこと リチウムリン酸塩電池用の電力電子システムは、充電率を制御し、過充電を防ぐように設計されている必要があります。過充電された電池は、電解質が高温になると過剰な水素と酸素のガスを発生させることがあります。完全に密閉された電池では、このガスの蓄積が電池が破裂する危険性を生じさせることがあります。これは、電池の全体的な寿命を短くします。電力管理および保護システムがない場合、電池は過熱し、極端な場合には火災のリスクを生じさせることもあります。リチウムリン酸塩電池は他のリチウムイオン電池よりも出力エネルギー密度が低いため、より安全である傾向があります。 電力管理システムの要件 充電式リチウムイオンおよびリチウムリン酸塩電池用の電力管理システムは、充電電圧/電流を制御し、過充電を防ぐために充電電流を制限する必要があります。これらのシステムは、短絡時に放電率を制御または抑制できるようにすることも保証すべきです。これにより、電池の寿命が延びます。 これらの電力電子システムは、バッテリーの充電と放電を制御するために、他の重要な運用要求を満たすように構築されなければなりません。これらのシステムは、その寿命を通じて、ほとんどのPCBよりも頻繁に熱サイクルを経験します。これらのシステムはまた、高電流を運ぶため、他のPCBよりも高温に耐えるように設計されなければなりません。これらの電子システムが動作する電気化学的環境は、腐食のリスクにさらします。 もし次のモバイルデバイスを動かすためにバッテリーを使用する計画がある場合、または非常用電源を提供する場合、選択肢はたくさんあります。 PCB設計におけるリチウムリン酸塩およびイオンバッテリーについてもっと学びましょう。 電力分配システムとバッテリーアレイはしばしば高電圧および高電流で動作し、信頼性を確保するために特別な設計技術が必要です。 高電圧電力システムのためのPCB設計についてもっと学びましょう。 電力システムを設計する際は、電力エレクトロニクスを設計する際に電力供給分析ツールを使用するとはるかに簡単です。 電力エレクトロニクス設計にPDNシミュレーションを取り入れることについてもっと学びましょう。 Altium
Altium Designerでのコネクタのモデリングと配置
Altium Designer 専門家を対象とする、効果的で使いやすい最新のPCB設計ツール。 I/OによるPCBシステム統合でのコネクタの使用 統合された電子機器とそれらの内部装置を踏まえると、プリント回路アセンブリにはたくさんのコネクタが使用されます。デジタルシステム時代に突入してから数十年が過ぎた今、データはあらゆる場所にあふれ、世界の通信のニーズに対応しています。イーサネットやユニバーサル・シリアル・バス(USB)などの入出力のプロトコルには、機器とプリント回路アセンブリの間で物理的な電気機械コネクタが必要です。 プリント回路アセンブリ上にコネクタを構築するには、 ECADとMCADの両方のモデリングツールで通信経路を定義しなければなりません。これにより、選択したコンポーネントの情報がコネクタに提供されます。こうしたコンポーネントでは、領域のパターンを示すフットプリントのほか、コネクタの導電体の筐体寸法線も確認できます。 Altium Designerでは、フットプリントや3Dモデルとともに、数千種類のコネクタが登録されたライブラリが提供されています。フットプリント エディタでは、ベンダーから提供されている最新の優れたコネクタを追加することも可能です。また、統合環境でSTEPファイルのインポートとエクスポートを行って、機構設計者と簡単にファイルを共有できます。コラボレーションが容易なため、I/Oに向けて洗練された設計が促進されます。 電気系統でのコネクタの使用 電気設計でコネクタを使用すると、プリント回路アセンブリに出入りする信号が接続されます。これらはプリント回路アセンブリ上の大型の電気機械コンポーネントになり、回路基板のパッドへの接続のための導電ピンの格納に使用されます。ここでは、システム内の機器とI/O信号が結び付けられます。コネクタは2つの部分で構成され、1つの電気システム内でPCBを他のPCBやケーブル、機器に接続できます。PCBでどのコネクタを使用する場合も、必ずシステム機器の対象となるポイントで接続を行う必要があります。 3DモデリングでPCBのコネクタの配置を確認する PCBでの入力と出力を可能にするコネクタ コネクタはプラグとソケットのペアで指定します。検討の必要がある機構的な要素としては、サイズ、材料、ロック機構が挙げられます。電気的特性については、ピン間の絶縁と接続点の接触抵抗について検討します。入力と出力の観点からすると、コネクタは信号伝搬の種類によって分類されます。USB、RS-485、イーサネット、MIDI、SVGA、HDMI、無線周波数の基準が、コネクタでの標準的な機構設計になります。電子信号伝送に使用されるコネクタは何千とあります。PCBでは内部接地プレーンとの確実な接続とロバスト性を確保するために、スルーホールコネクタが使われることが多いものの、実際に最も適しているのは表面実装コネクタです。 PCBでは多くの種類のI/Oコネクタを使用できます。 スポーティーな3Dコンポーネント モデル ドライバーでレイアウト向けの機能を組み込む メモリPCB設計パッドはマザーボードのソケットに接続します。
次のPCBにおけるESD接地要件
高電圧機器や電源に囲まれた環境で使用されるPCBは、静電気放電(ESD)のリスクにさらされています。静電気は、リストストラップなしで基板を扱うと、直接基板に放電して、敏感な電子部品を破壊することもあります。これによりPCBに一時的な電圧が誘導され、敏感な部品に損傷を与える可能性があります。極端な場合、例えば雷撃や大規模な電力サージのように、ESDと一時的な電圧は、回路がショートするときと同様に、基板が火を捕らえる原因となることがあります。 ESDに関連する危険性を考えると、多くの業界標準では、敏感な回路を保護するためのESD接地要件を定義しています。適切な設計ソフトウェアを使用すれば、適切なESD接地要件に従って回路を損傷から保護するための対策を実装できます。Altium Designerには、アプリケーションに必要なESD保護のレベルを提供できる接地フロアプランを作成するために必要な重要なツールが含まれています。 ALTIUM DESIGNER
®
単一のソフトウェアプラットフォームで最高の回路図設計、部品管理、およびレイアウト機能を備えたPCB設計パッケージ。 雷、地元の電力会社からの電力サージ、家庭内の電気配線のショート;これらすべてはサージプロテクターで保護することができます。あなたはすでに家庭用電子機器で電源タップを使用しているので、それらが提供するサージ保護に慣れているでしょう。サージプロテクターは、電子製品に誘導される電流スパイクを減衰させ、損傷から保護します。あなたの家のブレーカーには、ショートサーキットの場合に自動的に作動するスイッチが含まれており、電気火災から家を保護します。 これらのシステムすべてに誘導される過渡電圧および電流スパイクは、110Vまたは220VのACラインに接続されていないデバイスでも発生する可能性があります。多くの業界標準では、電子製品のPCBに過渡電圧抑制メカニズムを含めることが求められています。ESDによる電力変動および過渡電圧の許容限度は、CBEMAカーブを使用して定義され、このカーブは多くの業界要件の基礎を形成しています。 ESDによる損傷から基板を保護するために実装できるいくつかの方法があります。おそらく、最も効果的な戦略は、適切なESD接地戦略を実装することによってコンポーネントを損傷から保護することです。どの方法を選択しても、これらの保護をPCBレベルで実装するのを容易にする設計ソフトウェアを使用する必要があります。これは、電子機器を保護するためにサージプロテクターや回路遮断器を使用する計画を立てることを超えています。 ショック管理のためのESD接地方法 過渡電圧を抑制し、ESDから敏感な回路を保護するための最も単純でありながら最も効果的な方法は、スパイクの発生時に回路から電力を切断することです。この戦略には、回路遮断器やヒューズを使用できますが、基板の適切な場所にこれらの要素を1つ以上配置することに依存しています。明らかに、これは、ほとんどの設計が持つ数多くの他の要件を考慮すると、すぐに非現実的になります。 ショック管理へのESD接地要件の最適な適用は、外部ソースから直接基板に移動するESDから基板を保護することを含みます。より良いオプションは、静電気からの放電を電気的グラウンドにルーティングする接地戦略を設計することです。これにより、誘導された電圧がコンポーネントに電流を流すのを防ぎます。 接地戦略を持つ基板の設計 グラウンド戦略を実装することは、単にボードにグラウンドプレーンを配置する以上のことを意味します。2点間の静電気が直接グラウンドプレーンにESDを誘導する場合、電流はグラウンドプレーンに接続されている敏感なコンポーネントに直接流れる可能性があります。ボードに誘導される過渡電圧はかなり強力であり、ボードの他の場所に電流を駆動し誘導することがあり、コンポーネントを損傷させる可能性があります。 幸いなことに、グラウンドプレーンと一緒に設置することで、ESDイベントから敏感な電子機器を保護できるいくつかのコンポーネントがあります。重要なコンポーネントには、TVSダイオードとバイパスコンデンサがあります。グラウンドプレーンおよびより大きなグラウンド戦略と適切に組み合わせることで、デバイスのESDグラウンド要件を満たすことができます。 ESDは多くの外部ソースから生じる可能性があり、多くの電子デバイスで重要です。ESDの原因について学ぶことで、ESDイベントに対して回路を保護するための適切な設計を実装するのに役立ちます。 PCBのためのESDおよびいくつかの保護対策についてもっと学びましょう。 ボードのどこかにグラウンドプレーンを配置するだけでは、すべてのESDイベントを抑制するには十分ではありません。 ESD保護のためのPCBグラウンドプレーンの使用についてもっと学びましょう。 ESDが発生すると、回路内の他の場所で電流が誘導されることがあります。これは、寄生インダクタンスによる急速な電流の流れと一時的な電圧信号が原因です。賢い設計選択により、回路がESDに耐えられるようにすることができます。
PCBサージ保護:過渡電圧抑制のためのPCB設計
電源サージによる過渡電圧抑制は、PCB内のコンポーネントに深刻な損害を与える可能性があります。適切なソフトウェアを使用すれば、PCBにESD保護および抑制戦略を実装することができます。
Pagination
First page
« First
Previous page
‹‹
ページ
8
現在のページ
9
ページ
10
ページ
11
ページ
12
ページ
13
Next page
››
Last page
Last »
💬
🙌
Need Help?
×
📞
1-800-544-4186
📞
1-858-864-1798
✉️
sales.na@altium.com
🛟
Support Center
🎓
Training Support
📣
Ask Community
📞
Contact Us