シミュレーションと解析

シミュレーションと解析は、回路図ではプリレイアウト、完成した物理設計ではポストレイアウトで実行できます。Altium Designer には、SPICEシミュレータ、反射やクロストークのシミュレータ、サードパーティのフィールドソルバとの統合など、両方の領域で成功するためのリソースが含まれています。シミュレーションツールの使用や設計における電気的挙動の解析については、ライブラリのリソースをご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
Altium Designerでアンプのシミュレーションを作成する方法高速信号の配線長の一致は、すべて同期に関連する  テストと測定の段階は迅速に済ませたいものです。最終的に設計段階が完了すると、試作のテストを行えるようになります。これは同時に、システムに必要なコンポーネントを絞り込み、システムで計画している機能を評価することでもあります。回路のテストと測定は非常に重要ですが、これらは比較の基礎がなければ意味を成しません。 シミュレーションの役割 アンプでも他のどのような回路でも、シミュレーション ツールは基板をレイアウトする前に回路を検証する際に重要です。多くのコンポーネント製造業者は特定のアプリケーションに特化したIC、SoC、SoMを製造していますが、コンポーネントによっては要求に対処できない場合もあります。次のシステムで使用する革新的な機能を実現するためには、多くの場合に各種のICや別々のコンポーネントからカスタム回路を構築する必要があります。  このような場合は、設計を評価するためにシミュレーション ツールが有用です。シミュレーションの結果は、後で試作のテストを開始するときや、特化したコンポーネント Altium Designerでアンプのシミュレーションを作成する方法 1 min Thought Leadership 高速信号の配線長の一致は、すべて同期に関連する テストと測定の段階は迅速に済ませたいものです。最終的に設計段階が完了すると、試作のテストを行えるようになります。これは同時に、システムに必要なコンポーネントを絞り込み、システムで計画している機能を評価することでもあります。回路のテストと測定は非常に重要ですが、これらは比較の基礎がなければ意味を成しません。 シミュレーションの役割 アンプでも他のどのような回路でも、シミュレーション ツールは基板をレイアウトする前に回路を検証する際に重要です。多くのコンポーネント製造業者は特定のアプリケーションに特化したIC、SoC、SoMを製造していますが、コンポーネントによっては要求に対処できない場合もあります。次のシステムで使用する革新的な機能を実現するためには、多くの場合に各種のICや別々のコンポーネントからカスタム回路を構築する必要があります。 このような場合は、設計を評価するためにシミュレーション ツールが有用です。シミュレーションの結果は、後で試作のテストを開始するときや、特化したコンポーネント用の評価基板を使用するときに、比較用の参照として使用されます。今日では新しい マイクロ波やミリ波のシステムが一般的になりつつあり、特に5Gやレーダー アプリケーションがあらゆる場所で使用されるようになっているため、RFアンプを中心に特化されたシステムの設計が必要になることが増えるでしょう。このようなシステムではシグナルインテグリティーが特に重要で、設計者は性能を評価するためにシミュレーションを行うことになります。 Altium Designer®には大規模なコンポーネントライブラリがあるほか、解析ツールも内蔵されているため、アンプの正確なシミュレーションを作成して多くの解析を実行できます。必要なシミュレーション ツールはAltium Designerの回路図エディタ―に内蔵されており、回路の設計時に簡単に利用できます。 Altium Designerでアンプのシミュレーションを作成する 新しいシミュレーションの作成は、アンプ回路や信号処理ブロックなど、どんな回路も回路図レベルで開始されます。最初の手順は Altium Designerで新しい回路図を作成し、必要なシミュレーション ソースを見つけることです。空白の回路図を作成してから、アンプとそれに関連する回路用のコンポーネントを見つける必要があります。[Components] パネルに移動してSimulation 記事を読む
PDNインピーダンス解析、およびモデリング:回路図からレイアウトまで 1 min Blog シグナルインテグリティーはよく話題になりますが、シグナルインテグリティーはパワーインテグリティーと密接に関連しています。これは、電源/電圧レギュレーターからのスイッチングノイズまたはリップルを減らすだけではありません。PCB内のPDNのインピーダンスにより、基板のコンポーネントが電源の問題が原因で設計どおりに機能しなくなる設計上の問題が明らかになります。 ここでは、PDNインピーダンス解析の基本モデルについて理解していきます。PDNインピーダンスのある程度、正確なモデルを構築できれば、コンポーネントに適したデカップリング ネットワークを設計し、PDNのインピーダンスを許容範囲内に保持できます。 PDNインピーダンス解析を行う理由 この記事をご覧の高速、および高周波設計者の方は、この質問に対する答えを既にご存じだと思います。しかし、技術的な需要の高まりに合わせ、全ての設計者が予想より早く高速および高周波設計者になることが考えられるため、PDNインピーダンスがPCBの信号の動作に与える影響を理解しておくことが重要です。残念なことに、この情報は必ずしも1つの場所に適切にまとめているわけではないため、ここで詳しく説明したいと思います。 簡単にまとめると、PDNインピーダンスは回路の次の側面に影響します。 電源バスノイズ。PCBの過渡電流が原因で生じる電圧リップル。PDNインピーダンスは周波数の関数であるため、スイッチングによって生じる電圧リップルも周波数の関数になることに注意してください。これらの過渡電流は、電圧レギュレーターからの出力のノイズレベルに関係なく発生する可能性があります。 電源バスノイズの減衰。場合によっては、電源バス上のリップルがリンギング(減衰不足過渡振動)として示されることがあります。これは、デカップリング コンデンサーのサイズが適切でない場合、またはデカップリング ネットワークでデカップリング コンデンサーの自己共振周波数が考慮されていない場合に発生する可能性がある1つの問題です。 必要なレベルのデカップリング。従来、コンデンサーは自己共振周波数が相対的に低い(100MHz以下)ために、TTLと高速のロジックファミリーを使用するPCBでデカップリングを確保するには不十分でした。そのため、設計者はデカップリングを確保するのに十分な静電容量を提供するために、プレーン間静電容量を使用していました。自己共振周波数がGHzの新しいコンデンサーを利用すれば、高速/高周波PCBでデカップリングを十分提供することができます。 電流リターンパス。リターン電流は最小抵抗(DC電流の場合)または最小リアクタンス(AC電流の場合)の経路をたどります。グラウンド ネットワークのインピーダンスはスペースによって異なり、信号トレースとPDN間の寄生結合に一部、依存します。 IRドロップ。電源およびリターン電流のDC部分では、PDNを構成する導体の固有抵抗により一定の損失が生じます。以下の画像はPDN解析結果の例で、特定の信号トレースの下を通るリターン電流と、同じGNDプレーンのDC電流を示しています。 タイミングジッター。信号の伝播時間は有限であるため、デカップリング コンデンサー、およびレギュレーターから引き出される電流がスイッチング コンポーネントに到達するまで時間がかかります。これらの信号がコンポーネントに到達すると、出力信号に干渉し、信号の立ち上がり時間にジッターを発生させる可能性があります。一般的に、パワーレールのノイズによるタイミングジッターは、ノイズの強度、およびレギュレーターとコンポーネント間の長さに応じて増加します。長いパワーレールでは、タイミングジッターが数ナノ秒で数百に達して、データの同期がとれなくなり、ビットエラー率が増加する可能性があります。 このPDNアナライザー出力の信号トレースに注目 PDNインピーダンス解析の簡略モデル 記事を読む
高速PCB設計においては、グラウンドプレーンのギャップを横切ってはいけません 高速PCB設計においては、グラウンドプレーンのギャップを横切ってはいけません 1 min Blog PCB設計者 PCB設計者 PCB設計者 電子機器やPCBのフォーラムをよく閲覧していますが、同じ質問が何度も何度もされています。なぜグラウンドプレーンの割れ目を越えてトレースを引いてはいけないのか?この質問は、ハイスピードPCB設計にちょうど足を踏み入れたばかりのプロのデザイナーからメーカーまで、誰もが尋ねます。プロの信号完全性エンジニアにとって、答えは明らかでしょう。 長年のPCBレイアウトエンジニアであろうと、たまにデザインする人であろうと、この質問への答えを理解することは役立ちます。答えは常に絶対的な表現で枠付けられます。PCB設計の質問に絶対的な用語で答えることはあまり好きではありませんが、この場合は答えが明確です:グラウンドプレーンの隙間を越えて信号をルーティングしてはいけません。さらに詳しく掘り下げて、なぜグラウンドプレーンの隙間を越えてトレースを引いてはいけないのか理解しましょう。 グラウンドプレーンの隙間:低速および高速設計 この質問に答えるには、DC、低速、高速での信号の振る舞いを考慮する必要があります。これは、各タイプの信号がこの基準面で異なるリターンパスを誘導するためです。信号がたどるリターンパスは、基板内で生成されるEMIに及ぼす重要な影響、および特定の回路がEMIに対してどれほど感受性を持つかについて、いくつか重要な影響を及ぼします。PCB内でリターンパスがどのように形成されるかをよりよく理解するために、 この記事と、Francesco Podericoからの 役立つガイドをご覧ください。 PCB内でリターン電流がどのように形成されるかを理解すれば、それがEMIと信号の整合性にどのように影響するかを見るのは簡単です。ここで重要な理由です—そしてそれはグラウンドプレーンのギャップを越えるルーティングに関連しています。ボード内のリターン電流によって形成されるループは、2つの重要な振る舞いを決定します: EMIの感受性。回路内の供給電流とリターン電流によって作られるループは、ボードのEMIに対する感受性を決定します。大きな電流ループを持つ回路は、より大きな寄生インダクタンスを持ち、放射されるEMIに対してより感受性が高くなります。 スイッチング信号におけるリンギング。回路内の寄生インダクタンスは、信号がレベル間で切り替わる際の 過渡応答の減衰レベルを決定します。回路内の寄生キャパシタンスと併せて考えると、これら二つの量は過渡応答の自然周波数と減衰振動周波数を決定します。 DC、低速、高速信号を詳しく見てみましょう: DC電圧/電流 基板がDC電源で動作する場合、リターン電流は信号トレースの直下ではなく、供給リターンポイントに直線的に戻るため、リターンパスを実質的に制御することはできません。これは、大きな寄生インダクタンスのために基板がEMIに弱くなることを意味します。電源が切り替わらないため、過渡振動がないと思われがちですが、マイクロストリップトレースがグラウンドプレーンのギャップを越えてルーティングされている場合でも、EMIの感受性の問題は依然として存在します。DCループのインダクタンスをできるだけ低く保つべきであり、ループインダクタンスを減らすためには、グラウンドプレーンのギャップを越えるルーティングを避けるのが最善です。 低速信号 DC信号と同様に、リターンパスは回路のループインダクタンスを決定し、これが EMI感受性および過渡応答の減衰を決定します。ループインダクタンスが大きい場合、減衰率は低くなり、DC信号の場合と同様に、グラウンドプレーンのギャップを越えてルーティングするとループインダクタンスが増加し、信号の整合性、電力の整合性、およびEMIに影響を与えます。 残念ながら、低速信号はある種の遺物であり、TTL以上の速度のロジックを使用するすべてのボードは高速回路として振る舞います。低速信号(一般に数十nsの立ち上がり時間とそれより遅い)では、特定の回路のリンギング振幅は通常、低く抑えられていたため、気づかれないことが多かったです。したがって、信号がグラウンドプレーンのギャップを越えてルーティングされない限り、ループインダクタンスは通常、激しいリンギング、EMI感受性、および関連する電力整合性の問題を防ぐのに十分に低かったです(下記参照)。 高速信号 低速で動作するように設計された基板に高速信号を流すと、与えられた回路ループのインダクタンスに対して、リンギングの振幅が大きくなります。これは、基板内のループインダクタンスをできるだけ小さく保つ必要性を再び示しています。目標は、与えられた相互接続においてリンギングの振幅を減少させるために、できるだけ多くの減衰を提供することです。再び、グラウンドプレーンのギャップを越えてルーティングすることで、ループインダクタンスの増加を避けることができます。さらに、高速回路を運ぶ信号層の下にグラウンドプレーンを配置することで、相互接続全体を通じてループインダクタンスができるだけ低くなるようにする必要があります。 記事を読む
回路設計における過渡信号解析のためのツール 回路設計における過渡信号解析のためのツール 1 min Thought Leadership 適切なシミュレータを使用すれば、これらの回路で過渡信号解析を行うことができます。 私はまだ最初の微分方程式のクラスを覚えています。最初に議論されたトピックの一つが、多くの異なる物理システムで発生する減衰振動回路と過渡信号応答でした。PCB内のインターコネクトや電源レールでの過渡応答は、ビットエラー、タイミングジッター、および他の信号整合性の問題の原因となります。過渡信号解析を行うことで、完璧な回路を設計する道のりでどの設計ステップを踏むべきかを決定できます。 単純な回路での過渡信号解析は、手作業で調べて処理することができ、時間の関数として過渡応答をプロットすることができます。より複雑な回路は、手作業で分析するのが難しい場合があります。代わりに、シミュレータを使用して回路設計中に時間領域の過渡信号解析を行うことができます。適切な設計ソフトウェアを使用すれば、コーディングスキルも必要ありません。 回路設計における過渡現象の定義 正式には、過渡現象は、一連の結合された一次線形または非線形微分方程式(自律的であるか非自律的であるかにかかわらず)として記述できる回路で発生する可能性があります。過渡応答はいくつかの方法で決定できます。私の意見では、ポアンカレ・ベンディクソンの定理を使用して、任意の結合方程式セットに対して手作業で簡単に処理できるため、過渡応答のタイプと存在を簡単に判断できます。このような操作が得意でない場合でも心配はいりません。SPICEベースの回路シミュレーターを使用して、時間領域で過渡挙動を調べることができます。 フィードバックのない時間不変回路の過渡応答は、3つの領域のいずれかに分類されます: 過減衰:振動のない遅い減衰応答 臨界減衰:振動なしで可能な限り速い減衰応答 減衰振動:減衰し、振動する応答 これらの応答は、時間領域シミュレーションの出力で簡単に確認できます。SPICEシミュレーターを使用して、回路図から直接過渡信号分析を実行できます。 時間領域での過渡信号分析のためのツール 回路の挙動を調べ、過渡信号解析を探求する最も簡単な方法は、時間領域シミュレーションを使用することです。このタイプのシミュレーションは、ニュートン・ラフソン法または数値積分法を使用して、時間領域で回路のキルヒホッフの法則を解くことにより行われます。これは、シミュレートされる回路の形式に依存します。これらおよびその他の方法は、SPICEベースのシミュレータに統合されており、明示的に呼び出す必要はありません。過渡解析のもう一つの方法は、回路のラプラス変換を取り、回路の極と零点を特定することです。 回路シミュレーションの観点からは、回路図から直接過渡信号解析シミュレーションを実行できます。これには、回路の挙動の2つの側面を考慮する必要があります: 駆動信号。これは、過渡応答を引き起こす入力電圧/電流レベルの変化を定義します。これには、2つの信号レベル間の変化(例えば、スイッチングデジタル信号)、電流入力信号レベルのドロップまたはスパイク、または駆動信号の任意の変化が含まれる場合があります。正弦波信号や任意の周期波形で駆動することも考慮できます。また、信号が2つのレベル間で切り替わる際の 有限立ち上がり時間も考慮できます。 初期条件。これは、駆動信号が変動する瞬間または駆動波形がオンになった瞬間の回路の状態を定義します。これは、時刻 t = 0 で、回路が初めて定常状態(つまり、回路内に以前の過渡応答がなかった)にあったと仮定します。初期条件が指定されていない場合、t 記事を読む
マイクロ波およびミリ波周波数におけるRFアンプのインピーダンス整合 マイクロ波およびミリ波周波数におけるRFパワーアンプのインピーダンス整合 1 min Thought Leadership MarketWatchによると、RFアンプの全体市場は2023年に270億ドルを超えると予想されています。では、これらのRFアンプはどこで使用されることが予想されているのでしょうか?5Gや一般的なセルラーネットワークの拡大により、予想される成長の大きな部分を占めることができます。PCBデザイナーにとって、特に高出力アンプの場合、RFアンプのインピーダンスマッチングは重要な設計ポイントになります。 大信号RFアンプのインピーダンスマッチング RF電力整合性に関わる人々は、特にパルスRFパワーアンプを扱う場合、アンプの出力を通じて過渡信号を抑制するためにモバイルデバイスに良好な電圧レギュレータが必要であることをよく知っているでしょう。RF設計に取り組み始めるかもしれない信号整合性に関わる人々は、RF回路を分析し、適切なインピーダンスマッチングを決定する際に、低信号レベルでSパラメータを使用することに慣れているかもしれません。Sパラメータの使用は、これらのアンプが非線形領域で動作しているため、Class ABおよびClass C RFアンプ設計には適していません。 低信号レベルでの電力伝送(つまり、線形領域において)に関しては、負荷インピーダンスが アンプの出力インピーダンスの複素共役に一致している場合に最大の電力伝送が保証されます。しかし、電力アンプ(通常、RF送信セクションに配置される)は、意図的なインピーダンスの不一致がある場合に、定格出力電力でより高い利得と効率を提供するかもしれません。 高出力で動作する場合、アンプの出力インピーダンス/負荷インピーダンスの一致/不一致が、負荷への最大電力伝送を生み出すものは、所望の周波数で最大効率を生み出す一致/不一致と一致しない場合があります(これは抵抗成分について確かに当てはまります)。では、最適な性能を確認するために、負荷における正しい一致したインピーダンスをどのように決定できるでしょうか?ソースによって見られるインピーダンスは、アンプの入力および出力電力レベルに依存するため、 アンプの出力によって見られる適切なインピーダンスを決定するためには、負荷プル分析を使用する必要があります。その後、この値に負荷のインピーダンスを一致させる必要があります。 シミュレータとスミスチャートを使用して、ロードプル解析を行う比較的簡単な方法があります。この方法は、特定の入力電力で、大量の負荷インピーダンス値(インピーダンスは抵抗とリアクタンスの合計であることを忘れないでください)を反復して通過させることです。次に、負荷抵抗とリアクタンスの各組み合わせに対して出力電流/電圧をプローブし、これによりゲインと効率も計算できます。その後、特定の入力電力での負荷インピーダンスの関数として出力電力の輪郭をプロットします。 これは以下のスミスチャートで示されています:各輪郭は、特定の出力電力(緑)と効率(青)を生成する抵抗とリアクタンスの値のセットを示しています。赤い輪郭は、これら2つの曲線のセットが重なる領域を示しています。輪郭が交差する特定の出力電力において、出力電力と効率の間のトレードオフを決定できます。異なる入力電力では、異なるセットの輪郭が生成されることに注意してください。 RFアンプのインピーダンスマッチングに関するロードプル解析の結果を示した例のスミスチャート [ ソース] 負荷プル結果から決定したリアクタンスと抵抗の組み合わせは、負荷インピーダンスを設定するためにどのマッチングネットワークを使用すべきかを教えてくれます。その後、テストクーポンを使用したベクトルネットワークアナライザーの測定でこれを確認できます。高周波でのマッチングネットワークの振る舞いに注意してください。自己共振に加えて(下記参照)、マッチングネットワークの帯域幅が FMCWチャープレーダーに対していくつかの問題を引き起こす可能性があります。77 GHzで、チャープ範囲が4 GHzに達することができるので、帯域幅は73から81 GHzまで比較的フラットであるべきです。 記事を読む
PCBにおける冷却ファンの電気ノイズ低減 PCBにおける冷却ファンの電気ノイズ低減 1 min Blog 電気技術者 電気技術者 電気技術者 PCやラップトップを開けて、そのファンやヒートシンクをじっくりと見たことがない人はいないでしょう。高速コンポーネント、高周波コンポーネント、または電力コンポーネントを扱っている場合、これらのコンポーネントから熱を取り除くための冷却戦略を考える必要があります。蒸発冷却ユニットを設置するか、水冷システムを構築するという核オプションを使用したくない場合は、冷却ファンを使用すると、最小の形状で最良の結果を得ることができます。対流熱伝達を助けるために、ヒートシンクにファンを追加することは良い考えです。 ファンの電気ノイズと放射EMI システムを冷却するためにどの方法を使用するにしても、または冷却システムを構築している場合でも、ファンを駆動するために使用される方法に応じて、特定のEMI/EMCの点を考慮する必要があります。 AC駆動 AC駆動ファンは、周波数制御なしでは速度制御ができないため、コンパクトなシステムではあまり使用されません。また、これらのシステムは一般的に高AC電圧で動作するため、工業システムで見られることが多いです。これらのファンは、基本周波数および高次高調波で顕著な伝導EMI(共通モードおよび差動モード)を発生させ、これが電源/グラウンド線を通じて伝播します。これは通常、 共通モードフィルタリング(LCネットワーク)に続いて差動フィルタリング(別のLCネットワーク)、そして直列のRCフィルターで除去できます。 DC駆動 DCファンは電気的にノイズがないように見えるかもしれませんが、音響的および電気的ノイズを発生します。異なるタイプのファンは、それぞれ独自のEMIを発生させ、 EMCテストの合格を困難にします。DCモーターを駆動しても、ローターを引き寄せたり反発させたりするために使用される回転する磁石のおかげでEMIを発生させます。これは、整流時に強いスイッチングノイズを生じます。DCファンから発生するEMIは、通常、ファンの電源リード内の伝導EMIに限定されます(2線式DCファンの場合)。このファンの電気ノイズは通常、共通グラウンドに注入され、ファンを駆動する任意のアンプの出力で再現されます。 シンプルな単軸DC冷却ファン これは、DCファンが放射されるEMI(電磁干渉)を発生させないという意味ではありませんが、放射されるEMIは、永久磁石とステータ巻線からの未封じ込め磁場(UMF)により、回転速度と同じ周波数になります。UMFはほとんどのファンにある程度存在しますが、UMFに対処する最初のステップはメーカーの責任です。一部のメーカーは、少なくとも2つの取り付け面でUMFを抑制するために、ファンに薄い鋼のエンクロージャを設置します。これは、放射されるEMIがファンの向きに強く依存することを意味します。 UMFからの放射されるEMIは、近くの高インダクタンス回路に低周波のリップル電流を誘導することがあります。一般に、大きなファンは駆動のためにより強い磁場を必要とするため、与えられた回転速度でより強いEMIを示します。しかし、数千RPMの回転速度でさえ、この放射されるEMIの周波数は数百Hzの範囲内にしかなりません。 PWM駆動 PWM駆動ファンは、デューティサイクルとPWM信号を変化させることで速度制御を提供します。PWM駆動では、 スイッチングMOSFETや他のデューティサイクルが変化する回路を扱っています。速度制御は、適切なデューティサイクルとパルス周波数を設定することで提供されることに注意してください。これは、非常に低いパルス周波数の極端な場合、PWM信号が低い間にファンが停止するまで遅くなる可能性があるため、実際にはかなり重要です。PWM信号が非常に速い(高周波)場合、ファンを速くしすぎようとすると、エイリアシング効果による興味深いノイズが聞こえます。 PWMで駆動されるファンの場合、ほとんどのPWMドライバーは、MHz範囲に達する高周波で共通モードノイズを発生させます。PWMで駆動される誘導モーターは、導電性EMIとして電源線を通じて近くの回路に共通モードノイズを誘導することがあり、これはEMC評価に影響を与える可能性があります。このタイプのファン駆動は、速度制御が必要なコンピューターでより一般的です。この場合、ファンが安定した速度を維持するために温度制御および速度調整回路の使用が必要であり、コントローラーが必要に応じてデューティサイクルを増減できるようにする必要があることに注意してください。 シンプルな単軸DC冷却ファン PWM回路自体もオーバーシュート/リンギングによって伝導EMIを発生させることに注意してください。これは平滑化またはフィルタリングされるべきですが、バイパスコンデンサや フェライトビーズをファンの入力に追加する前に、ファンメーカーのガイドラインを確認するべきです。この問題に対処するための推奨事項には、LCフィルターの構築、リンギング信号を除去するためのバンドストップフィルター、出力にRCフィルターを使用することなどが含まれているのを見たことがあります。いずれにせよ、フィルタリング戦略がメーカーの推奨事項を満たしていることを確認してください。 PWM信号の立ち上がり時間が速い場合、スイッチング信号が近くの回路にクロストークを誘発するスイッチングモード電源で見られるような類似の問題が発生することがあります。大型ファンを駆動するために高電流PWM信号を使用している場合、PWM信号のスイッチング動作が近くのデジタル回路に不随意のスイッチングを引き起こすことがあります。これは、PWMパルス列の周波数やデューティサイクルに関係なく発生します。この時点で、PWM回路に 記事を読む
77 GHz レーダー用自動車用PCB:ルーティングと信号整合性 77 GHz レーダー用オートモーティブレーダーPCB:ルーティングとシグナルインテグリティ 1 min Thought Leadership 最近の技術は急速に進化しており、自動車用レーダーは導入後間もなく、主に24 GHz近辺で動作していたものが、77 GHz波長へと移行しました。最近の規制変更により、77 GHzへの移行が可能となり、これには多くの利点があります。短い波長はより広い帯域幅を可能にし、より良い解像度、より小さいデバイスの形状、そしてより長い範囲を提供します。この帯域は偶然にも二原子酸素の2つの吸収帯の間に位置しており、24 GHz帯は水の吸収帯と重なっています。 高い周波数の使用は、77 GHz波長レーダーモジュールの設計、シミュレーション、およびテストに一連の課題を生み出します。レーダーモジュール自体の設計に加えて、デバイスレイアウト、より小さい形状への統合、および車両内のより大きなエコシステムへの統合は、完全自動運転車への長い道のりでの設計上の課題です。 長距離対短距離 77 GHz波長レーダー 前回の投稿で説明したように、チャープされたGHzパルスは、レーダーシステムの視野内の複数のターゲットを識別するために使用されます。チャープパルスの使用により、参照オシレータからの信号に対するドップラーシフトとビート周波数を測定することで、複数のターゲットの速度と距離の検出が可能になります。 位相配列アンテナ(3 Txおよび4 Rx SFPAs)の使用により、方向性の放射が可能となり、前述の2つの量とともに進入角を決定できます。 自動車用途の77 GHz波長レーダーで使用されるアンテナアレイのジオメトリ チャープ長(周波数範囲として測定)は、特定の自動車レーダーシステムの適用可能性の主要な決定要因です。長距離レーダー(LRR)は1 GHzの線形チャープパルス(76〜77 GHz)を使用し、高解像度短距離レーダー(SRR)は最大4 記事を読む