Electromagnetic interference (EMI)

PCB設計におけるEMI制御の習得:PDNのためのデカップリング戦略 PCB設計におけるEMI制御をマスターするシリーズの第5回目へようこそ。この記事では、電力分配戦略についてさらに深く掘り下げ、PCBプロジェクトにおける電磁干渉(EMI)性能を向上させるための最適化方法について議論します。 図1 - Altium Designer®でのデカップリング戦略の例 デジタルプリント基板上でEMIを制御し、信号整合性を向上させる上での重要な要素は、効果的なデカップリング戦略を実装することです。これらのアプローチは、基板上の集積回路(IC)にクリーンで安定したエネルギー供給を保証します。 これを達成するために、PCB設計者は、高速スイッチングICのエネルギー需要を満たす強力な電力供給ネットワーク(PDN)を作成する必要があります。これにより、電源から適切な電流量をICが受け取ることを保証します。効率的かつタイムリーにエネルギーを供給するPDNを設計することは挑戦的です。これには、損失を減らし、高性能のためのインピーダンスニーズを満たすことが求められます。 データレートと信号速度が増加し続ける中、低インピーダンスのPDN(Power Delivery Network)を設計することがより重要かつ困難になっています。これは、インピーダンスプロファイルが送信される信号の周波数と密接に関連しているためです。これらの要因をバランスさせることは、PCB設計の性能を維持し、EMI(電磁干渉)の問題を最小限に抑えるために不可欠です。効果的なパワーデリバリーネットワーク(PDN)を設計する際には、デカップリングキャパシタの組み込みや、スタックアップ内でのパワープレーンや銅ポリゴンの使用など、いくつかの一般的な技術が使用されます。 しかし、広く受け入れられている方法や神話の中には、実際には効果がないだけでなく、ボードの性能に悪影響を及ぼすものもあります。 アンチレゾナンス 一つの人気のある技術は、10nFから1µFまでの異なるサイズの複数のキャパシタを使用することです。大きなキャパシタが集積回路(IC)にエネルギーを供給し、小さなキャパシタが高周波ノイズをフィルタリングするという考え方です。このアプローチは論理的に思えますが、PDNの全体的なインピーダンスを減らそうとするときに実際には逆効果になることがあります。逆効果になる理由は、実際のキャパシタは理想的に振る舞わず、高周波数で顕著になる寄生効果を持っているためです。 コンデンサは、その共振周波数までのみ容量性インピーダンスを示します。この点を超えると、コンデンサのパッケージ内の寄生成分がインピーダンスに影響を与え始め、コンデンサの振る舞いがより誘導性を帯びるようになります。全体の容量を高め、インピーダンスを低くするために異なるサイズのコンデンサを使用する試みは、重大な課題を提示することがあります。これは、各コンデンサが独自のインピーダンスプロファイルを持ち、その特有の特性によって影響を受けるためです。各コンデンサは異なる共振周波数も持っており、これらのインピーダンスプロファイルが互いに重なる状況につながります。このインピーダンスプロファイルの重なりは、特定の周波数でより高いインピーダンスピークを引き起こします。これらのピークは、コンデンサのさまざまな共振周波数間の相互作用によって発生します。 図2 - アンチレゾナンス — 異なるインピーダンスプロファイルを持つ異なるサイズのコンデンサを並列に配置する効果。出典: fresuelectronics.com
EMI制御をマスターするPCB設計:EMCのためのコンポーネント配置 EMI制御の習得:EMCのためのPCB設計における部品配置 この PCB設計におけるEMI制御をマスターするシリーズの第2記事では、電磁干渉(EMI)の低レベルを維持するための重要な概念の1つについてさらに詳しく掘り下げます。 ボードの分離、または ボードのパーティショニングとしても知られているこの方法は、プリント回路基板(PCB)の異なる回路部分を整理して分けるために使用されます。これにより、特にEMIの観点から、ボードの全体的な性能が向上します。この技術は、電磁干渉を減少させるだけでなく、PCB設計の信号整合性を向上させるのにも役立ちます。 これらの技術の背後にある原則には、次のものが含まれます: 高周波デジタル信号の高エネルギー内容を含有する。 ボード内の異なるタイプの回路間での共通インピーダンス結合を避ける。 外部干渉への免疫を向上させ、放射を減少させるために電流ループ領域を減少させる。 高速信号と低速信号及びその高調波 最初の概念は、急速に切り替わる信号によって生じる高エネルギー高調波の内容を制御し、その電流が時間とともにどれだけ迅速に変化するかについてです。電流の変化率が高いほど、信号の高調波エネルギーが増加し、放射の可能性が高くなります。 第二の概念は、信号のリターン電流が信号の周波数によって変化するということです。これは、信号が伝播中に遭遇するインピーダンスが、導体の抵抗だけでなく、その容量と、最も重要な、そのループインダクタンスも含むためです。信号の周波数が増加するにつれて、周波数に依存するインダクタンス成分(インピーダンスの一部)が大きくなります。 リターンパスの違い 電流は常に最小のインピーダンスの経路を求めるため、信号の周波数が増加すると、リターン電流はインダクティブループを最小限に抑えるために信号電流に密接に従うことが重要です。逆に、信号の周波数が低い場合、インダクタンスが小さくなり、インピーダンスの抵抗成分が支配的になります。 この段階では、リターン電流は最小の抵抗の経路を見つけるために導体の表面全体に広がります。PCB設計者にとって重要な点は、リターン電流の源への戻り経路が信号の周波数に依存するということです。 図1 - Altium Designerにおける周波数に基づく異なるリターン電流経路の例 PCB設計者としての私たちの仕事は、これらのリターン電流間の干渉を最小限に抑え、共通インピーダンス結合を避けることです。これにより、電磁放射を引き起こす可能性があります。これを実現するために、PCB内に特定のゾーンやセクションを作成し、それぞれを特定のタイプの回路に専用することができます。これにより、電流ループも減少し、差動モード電流からの放射が少なくなります。 異なる回路のリターン電流経路をさらに隔離するために
EMIシリーズ_パートI PCB設計におけるEMI制御の習得:PCB内での信号の伝播方法 電磁干渉(EMC)に対応するためのプリント基板(PCB)の設計には、電磁場と電流の観点から信号の伝播をしっかりと理解することが求められます。これらの概念は、電磁場の放出レベルを低く抑え、外部からの放出や干渉に対する感受性を低くするPCBの設計に役立つため、重要です。 この PCB設計におけるEMI制御のマスターシリーズの最初の記事では、これらの概念をより深く掘り下げ、プリント基板設計にどのように適用するかを見ていきます。 伝送線路における信号の伝播の概念 PCBにおける信号の伝播について考える際には、水がパイプを流れるという類似から、電磁場と伝送線路の観点にシフトすることが重要です。伝送線路は、含まれた電磁場の形でエネルギーを一地点から別の地点へ転送するように設計された構造です。プリント基板の文脈では、伝送線路は少なくとも2つの導体によって形成されます。これらの導体は、電磁場を含むことと、それらを回路内の別の地点に導くことにおいて同じくらい重要です。2つの導体のうち1つが欠けていると、信号を構成する電磁場は未含有のままとなり、これらの場の拡大によりEMC試験に失敗する可能性があります。 ここから浮かび上がる非常に重要な概念は、電磁信号は導体の内部ではなく、2つの導体の間の空間、すなわち誘電体の中に含まれているということです。EMCの観点からの私たちの目標は、2つの導体の間に含まれる電磁場を最大化し、その周囲にある電磁場を減少させることです。 図1 - PCBにおけるデジタル信号伝播の表現 PCBでは、信号伝播に使用される2つの導体は、信号ポテンシャル導体と戻りおよび参照ポテンシャル導体です。これをイメージする最も簡単な方法は、信号源に接続された上層が信号トレースをルーティングするために使用され、下層が信号源に接続された固体銅層であり、信号ポテンシャル参照にも接続されている二層基板です(図1参照)。私たちが信号と呼ぶものは、これら2つの導体の間に含まれる電磁場です。これは、信号が単一の導体に含まれているのではなく、これら2つの導体の間の誘電体に含まれる電磁エネルギーであることを意味します。また、これは誘電体の特性が信号の伝播に影響を与え、特に信号(またはEM波)が伝播する速度に影響を与えることを意味します。信号の速度は誘電体内の光速です。2つの導体の間には信号が存在するポイントと、まだ信号に達していないポイントがあります。デジタル信号において、これら2つの領域の間に完全な信号があり、まだ信号が存在しないポイントを 信号エッジまたは 信号波面と呼びます。これはデジタル信号における低レベル論理から高レベル論理への遷移ポイントです。 EMCの観点から、このポイントは非常に重要です。なぜなら、これは導体間で電場と磁場が低から高に遷移する場所だからです。このエネルギー状態が変化する速度が速いほど、すなわち信号が低レベルから高レベル論理に遷移する速度が速いほど、短時間でエネルギーの変化が圧縮されます。信号が伝送線路内でその源から目的地に伝播する際、信号波面または信号エッジが信号の伝播をリードします。 前方電流、戻り電流、及び変位電流 もう一つの重要な概念は、信号エッジが伝播するのを追うと、先端が電磁場の変化であるため、これが2つの導体の間の誘電体内に変位電流を生成することがわかるということです。この現象は、オリバー・ヘビサイドによってまとめられたマクスウェルの四つの方程式、特にアンペール-マクスウェルの法則によって説明されます。これをイメージする最も簡単な方法は、AC源が適用されたときのコンデンサーを考えることです(図2参照)。 図2 - Eフィールドが適用されていないコンデンサー(a)、正のEフィールドが適用されたコンデンサー(b)、負のEフィールドが適用されたコンデンサー(c) 実際には、コンデンサーのプレートとその誘電体の間に導電電流はありませんが、誘電体に含まれる束縛電荷は、コンデンサーのプレートの適用された電場に従って単に極性を持ちます(変位します)。これは、導電電流がコンデンサーのプレートを流れているかのように見えます。変位電流の概念は、信号伝播中に電流が形成される可能性があることを理解するために重要です。特に信号が負荷に達する前にです。古典回路理論の授業で教えられるように、電流は常にループで流れます。では、どうして信号が負荷に達する前、つまり、信号が源から負荷に向かい、再び源に戻って電流ループを形成するために連続的な導電電流を確立する前に電流が存在するのか ?これは変位電流のおかげで可能です。変位電流は、信号が伝播する際に電流がループ内で流れ続けることを可能にします。変位電流がない場合、導電電流だけがあれば、信号の伝播は起こりません。導電電流だけで作られた電流ループは、負荷に達する前にループを閉じることができないからです。これは、導電電流を通して誘電体を流れる電流が必要であることを意味しますが、定義上、これは不可能です。しかし、この見かけ上の電流、変位電流により、信号が伝播する際にループが瞬時に閉じます。