Electromagnetic Interference (EMI)

Explore how smart PCB design minimizes electromagnetic interference and ensures compliance with EMC standards. From grounding techniques to layout strategies, these resources help you build quieter, more reliable electronic systems.

Filter
見つかりました
Sort by
役割
ソフトウェア
フィルターをクリア
EMIシリーズ_パートI PCB設計におけるEMI制御の習得:PCB内での信号の伝播方法 1 min Blog PCB設計者 PCB設計者 PCB設計者 電磁干渉(EMC)に対応するためのプリント基板(PCB)の設計には、電磁場と電流の観点から信号の伝播をしっかりと理解することが求められます。これらの概念は、電磁場の放出レベルを低く抑え、外部からの放出や干渉に対する感受性を低くするPCBの設計に役立つため、重要です。 この PCB設計におけるEMI制御のマスターシリーズの最初の記事では、これらの概念をより深く掘り下げ、プリント基板設計にどのように適用するかを見ていきます。 伝送線路における信号の伝播の概念 PCBにおける信号の伝播について考える際には、水がパイプを流れるという類似から、電磁場と伝送線路の観点にシフトすることが重要です。伝送線路は、含まれた電磁場の形でエネルギーを一地点から別の地点へ転送するように設計された構造です。プリント基板の文脈では、伝送線路は少なくとも2つの導体によって形成されます。これらの導体は、電磁場を含むことと、それらを回路内の別の地点に導くことにおいて同じくらい重要です。2つの導体のうち1つが欠けていると、信号を構成する電磁場は未含有のままとなり、これらの場の拡大によりEMC試験に失敗する可能性があります。 ここから浮かび上がる非常に重要な概念は、電磁信号は導体の内部ではなく、2つの導体の間の空間、すなわち誘電体の中に含まれているということです。EMCの観点からの私たちの目標は、2つの導体の間に含まれる電磁場を最大化し、その周囲にある電磁場を減少させることです。 図1 - PCBにおけるデジタル信号伝播の表現 PCBでは、信号伝播に使用される2つの導体は、信号ポテンシャル導体と戻りおよび参照ポテンシャル導体です。これをイメージする最も簡単な方法は、信号源に接続された上層が信号トレースをルーティングするために使用され、下層が信号源に接続された固体銅層であり、信号ポテンシャル参照にも接続されている二層基板です(図1参照)。私たちが信号と呼ぶものは、これら2つの導体の間に含まれる電磁場です。これは、信号が単一の導体に含まれているのではなく、これら2つの導体の間の誘電体に含まれる電磁エネルギーであることを意味します。また、これは誘電体の特性が信号の伝播に影響を与え、特に信号(またはEM波)が伝播する速度に影響を与えることを意味します。信号の速度は誘電体内の光速です。2つの導体の間には信号が存在するポイントと、まだ信号に達していないポイントがあります。デジタル信号において、これら2つの領域の間に完全な信号があり、まだ信号が存在しないポイントを 信号エッジまたは 信号波面と呼びます。これはデジタル信号における低レベル論理から高レベル論理への遷移ポイントです。 EMCの観点から、このポイントは非常に重要です。なぜなら、これは導体間で電場と磁場が低から高に遷移する場所だからです。このエネルギー状態が変化する速度が速いほど、すなわち信号が低レベルから高レベル論理に遷移する速度が速いほど、短時間でエネルギーの変化が圧縮されます。信号が伝送線路内でその源から目的地に伝播する際、信号波面または信号エッジが信号の伝播をリードします。 前方電流、戻り電流、及び変位電流 もう一つの重要な概念は、信号エッジが伝播するのを追うと、先端が電磁場の変化であるため、これが2つの導体の間の誘電体内に変位電流を生成することがわかるということです。この現象は、オリバー・ヘビサイドによってまとめられたマクスウェルの四つの方程式、特にアンペール-マクスウェルの法則によって説明されます。これをイメージする最も簡単な方法は、AC源が適用されたときのコンデンサーを考えることです(図2参照)。 図2 - Eフィールドが適用されていないコンデンサー(a)、正のEフィールドが適用されたコンデンサー(b)、負のEフィールドが適用されたコンデンサー(c) 実際には、コンデンサーのプレートとその誘電体の間に導電電流はありませんが、誘電体に含まれる束縛電荷は、コンデンサーのプレートの適用された電場に従って単に極性を持ちます(変位します)。これは、導電電流がコンデンサーのプレートを流れているかのように見えます。変位電流の概念は、信号伝播中に電流が形成される可能性があることを理解するために重要です。特に信号が負荷に達する前にです。古典回路理論の授業で教えられるように、電流は常にループで流れます。では、どうして信号が負荷に達する前、つまり、信号が源から負荷に向かい、再び源に戻って電流ループを形成するために連続的な導電電流を確立する前に電流が存在するのか ?これは変位電流のおかげで可能です。変位電流は、信号が伝播する際に電流がループ内で流れ続けることを可能にします。変位電流がない場合、導電電流だけがあれば、信号の伝播は起こりません。導電電流だけで作られた電流ループは、負荷に達する前にループを閉じることができないからです。これは、導電電流を通して誘電体を流れる電流が必要であることを意味しますが、定義上、これは不可能です。しかし、この見かけ上の電流、変位電流により、信号が伝播する際にループが瞬時に閉じます。 記事を読む
Altium Designerにおけるクロストークの低減と排除の技術 PCB設計におけるクロストーク分析、低減、および排除技術 1 min Blog デジタルボードに多数のトレースを設計している場合でも、非常に高い周波数で動作するRFボードを設計している場合でも、信号が伝播するあらゆる電子デバイスはクロストークを経験します。問題はそのクロストークがシステムが機能しないほど極端か、あるいはクロストークが何らかの許容範囲内にあるかどうかです。「許容」クロストークレベルの普遍的な基準はありませんが、シミュレーションと測定を通じて問題があることがわかった場合、クロストークを減らすために使用できる非常にシンプルな方法があります。 この記事では、高速設計でクロストークを減らすための確実な方法をいくつか見ていきたいと思います。常に好ましい結果をもたらすシンプルな3つの方法を概説します。もう1つの方法も改善を提供する可能性がありますが、新しい信号整合性の問題を作り出さないように、追加の分析やシミュレーションが必要です。 PCB設計におけるクロストークとは何か? 非常に単純に定義すると、クロストークは信号を運ぶ相互接続(攻撃者)が、その信号を隣接する相互接続(被害者)に誘導的または容量的に結合させる現象です。これは双方向であり、被害者と攻撃者を入れ替えても、他の条件が同じであれば、両方向にクロストークが発生すると予想されます。クロストークは信号が変化している間にのみ発生し、つまりデジタル信号のエッジレートの間に発生します。アナログ/ RF信号の場合、攻撃者の信号が常に変化しているため、隣接する相互接続上に位相がずれたレプリカが発生することがあります。純粋なDC信号はクロストークを引き起こしませんが、クロストークの被害者になることがあります。 以下に示されているように、クロストークと被害者の相互接続上のクロストーク信号の強度を決定する方程式を示す簡単なグラフィックがあります。ここで示されているクロストークは、次の2つのタイプに分けられます: 近端クロストーク(NEXT、赤い曲線)、時々背景クロストークと呼ばれる 遠端クロストーク(FEXT、緑の曲線)、時々前方クロストークと呼ばれる 両方のクロストークは、2つのトレース間の相互インダクタンス(Lm)と相互キャパシタンス(Cm)によって媒介されます。これら2つの効果が合わさって、被害線のドライバ側と受信側で見られるクロストークを決定します。 クロストークを支配する数学に興味があるなら、FEXTは理想的な場合には消去できることに気づくでしょう。これはFEXTの方程式における負の符号によって示されています。理想的で完全に対称なストリップラインでは、FEXTはゼロになりますが、実際にはクロストークがゼロになることはありません。 この基本的な導入を説明したところで、最も簡単なクロストーク削減技術を見てみましょう。 Altium Designerで使用できるクロストーク削減技術 デジタル信号を使用し、それらの信号が十分に速いエッジレートを持って顕著なクロストークを生じさせるPCBを設計している場合は、常にこれらの信号をグラウンドプレーンの上を通すように配線するべきです。これは、最低限、信号の立ち上がり時間がns範囲またはそれ以下に短縮されるデジタル設計において、 SIG+PWR/GND/GND/SIG+PWRスタックアップを使用することを意味します。 このタイプのスタックアップでグラウンドプレーン上をルーティングすると、必要に応じて50オームに設定できる定義されたインピーダンスが提供されるため、指定されたインピーダンス要件を持つ標準化された単端および差動インターフェースをサポートできます。これにより、トレースの幅が特定の値に設定され、その後、トレース間の間隔値を設定するために使用できます。 クロストーク削減のためのトレース間隔の拡大 被害トレース上のクロストークの強度を減らす最もシンプルで効果的な方法は、トレース間の間隔を広げることです。トレースが近接している場合、攻撃トレースの周囲の電気および磁気場が強くなり、その結果、被害トレース上のクロストークも強くなります。したがって、間隔を広げることは間違いなく線間のクロストーク削減を生み出します。 「3W」ルールとして知られる 基本的なPCB設計の経験則があり、それは次のように述べています: 記事を読む