Electromagnetic Interference (EMI)

Explore how smart PCB design minimizes electromagnetic interference and ensures compliance with EMC standards. From grounding techniques to layout strategies, these resources help you build quieter, more reliable electronic systems.

Filter
見つかりました
Sort by
役割
ソフトウェア
フィルターをクリア
PCB設計におけるEMI/EMC基準の達成 PCB EMI/EMC ガイドライン:あなたの設計でEMI/EMC基準を満たす 1 min Blog もし、携帯電話を2台並べたら、突然どちらも正常に動かなくなったらどうでしょう?幸いにも、このようなことは起こりません。なぜなら、設計者や製造業者が、これらのデバイスが導電性および放射性の電磁干渉(EMI)に関するEMC基準に準拠するように、真剣な努力をしているからです。どのデバイスも、市場に出る前にEMC基準を満たしている必要があります。 これは複雑に聞こえるかもしれませんが、次のデバイスがEMCテストに合格するのを助けるための、いくつかのシンプルな設計戦略があります。さまざまなEMC基準団体とその仕様を知ることから始めるのが良いでしょう。 PCB設計のためのEMC/EMI基準 EMC基準は、規制基準と業界基準の2つの広いカテゴリーに分かれます。あなたの設計のための規制基準は、製品を市場に出して販売したい場所(必ずしもそれが設計されたり製造されたりする場所ではない)に依存します。最初のEMC基準のいくつかは、1979年にアメリカ合衆国連邦通信委員会によって確立されました。その後、ヨーロッパ共同体が独自のEMC基準を定義し、これが将来の欧州連合基準の基礎となり、現在はEMC指令として知られています - 正式には欧州議会の電磁両立性(EMC)指令2014/30/EUと命名されています( こちらからヨーロッパの基準を見ることができます)。 業界標準への適合は、法的な問題だけでなく、特定の環境やアプリケーション領域で展開される電子機器の一貫性と相互運用性を保証するための業界固有の問題でもあります。効果的に、業界のEMC標準は、製造、組立、性能などの他の業界標準と同じ役割を果たします。EMC要件を定義する主要な業界標準機関および規制機関には、 米国連邦通信委員会(FCC) 米国連邦航空局(FAA) アンダーライター・ラボラトリーズ(UL) アメリカ無線技術委員会(RTCA) 国際電気標準会議(IEC)、通じて国際特別無線障害委員会(CISPR) 国際標準化機構(ISO) 自動車技術者協会(SAE) 電気電子技術者協会(IEEE) 米国軍を通じてのMIL-STD標準セット IECおよびCISPRの標準はヨーロッパでより人気がありますが、IEEEの標準は米国でより人気があります。特に、IEEEの標準はアンテナ校正試験の基礎を形成します。MIL-STDのEMC要件は、世界で最も厳格な標準の中の一つであり、電子機器の商業セクターに適応される最初の標準のいくつかでした。 EMC標準に準拠するための広範な要件 企業が非準拠のデバイスや製品をリリースした場合、警告を受けるか、 記事を読む
伝導放出のテスト機器と低減のガイドライン 伝導放出のテスト機器と低減のガイドライン 1 min Thought Leadership 私が大学に通っていた頃、クラスの1つが非常に難しかったため、教授はいつも1週間前にテストの問題を渡してくれました。試験の前に何を勉強すべきか正確に教えられていても、多くの学生が不合格に終わりました。電磁両立性(EMC)の伝導放出解析も同じようなものです。デバイスが電源を通して、電力網に多くのノイズを返していないかどうかをチェックする必要があります。これを行わないとFCCにより、公共電源を破壊する存在と見なされます。電源を経由して電力網へ返されるEMIに関して、デバイスの事前テストを行うことは難しくありません。しかし、最終的なチェックを行うとき、多くの製品は不合格になります。最終段階で不合格になると、時間と費用の両方に大きな損失となります。適切な機器を用意し、いくつかの事前準拠テストを行うことで、このような事態をすべて回避できます。また、PCBの設計と電源を調べ、発生源で伝導の問題を完全に解決しておくのも良い考えです。 事前準拠テストの利点 大学の頃の話に戻りますが、試験で教科書を参照しても良いクラスがいくつかありました。多くの学生は、教科書を参照できるならテストは簡単に解けると思い、事前に勉強しませんでした。それは大きな間違いで、多くの学生が落第しました。多くの人々は、EMCの伝導放出の部分は放射放出に比べて単純だと想定しますが、その考え違いから同じように多くの失敗が引き起こされます。 伝導放出の最終テストで不合格になった場合、作業をやり直す必要があり、何千ドルも無駄に費やすことになります。大学の試験に落第することはまずいことですが、このようなテストでのしくじりは、クラス全員が落第するようなものです。事前準拠用の機器は高価ですが、認定テストのやり直しほど高価なものではありません。EMC評価に失敗すると、製品の市場投入も遅延する恐れがあります。大きな修正が必要になった場合、プロジェクトが大幅に遅延することが考えられます。開発の初期段階、問題を比較的簡単に修正できるうちに洗い出すのが賢明です。 大学のテストは実際の設計ほど難しくはありません。 事前準拠用の機器 伝導放出のテストに必要な機器は、 放射放出 のテストとほぼ同じです。このようなキットは一般に数千ドルの価格です。 スペクトラムアナライザー(必須) - スペクトラムアナライザーは事前準拠テストの基幹です。この機械を使用して、基板から発生するあらゆるEMIを解析できます。これはおそらく最も高価な機器で、価格は1,000ドル以上です。 ソフトウェア(必須) - 本の読み方を知らなければ、テストで教科書を参照することが許可されても意味がないのと同様に、スペクトラムアナライザーはソフトウェアが無くては役に立ちません。一部のスペクトラムアナライザーにはソフトウェアが付属していますが、そうでない場合は、無料のプログラムと互換性のあるアナライザーを選択しましょう。 ラインインピーダンス安定化ネットワーク(LISN) - この装置は、伝導放出には必要ですが、放射放出には必要ありません。LISNは電源のノイズから デバイスを絶縁 し、インピーダンスを一致させて、スペクトラムアナライザーが正確に動作できるようにします。正確なテストを希望する場合は、この装置が2つ必要なこともあります。 記事を読む
スイッチングとリニアの電圧レギュレーター: どちらが電力管理回路に最適か スイッチングとリニアの電圧レギュレーター: どちらが電力管理回路に最適か 1 min Blog 目の前でコンデンサーが爆発したのを見たことがありますか? 私が電子機器の設計を始めたとき、まさにこれを体験しました。また私は、最初は「単純な」プロジェクトと設定されていたもので、パワーバジェットの計算に失敗しました。その結果、試作のPCBで電圧レギュレーターが、目玉焼きができるほど、またはもっと酷く真っ赤に焼けてしまいました。 それ以後に私は、設計の優雅さや洗練さはそれほど重要でないことに気付きました。電力管理回路の構成で間違いを犯せば、その設計は事実上無価値になってしまいます。パワーバジェットの計算、周囲の温度、そして私の事例では電圧レギュレーターなど中核の電力管理コンポーネントの選択が、PCBプロジェクトの成功を左右することがあります。 組み込みシステムにおける電力管理回路の機能 私は組み込みシステムの設計を10年以上行い、マイクロコントローラーの驚異的な進化を目にしてきました。マイクロコントローラーは、歴史的なZilogから今日のCortex M4プロセッサーまで進化してきました。Bluetooth LEやZiBeeなどのテクノロジーにより、組み込みシステム業界はさらに変革しました。しかし、電力回路を適切に設計する必要性は依然として変わっていません。適切な電力回路なしでは、このような優れたテクノロジーもただの「部品」にすぎず、しかも過熱し、溶けて燃えはじめ、悪臭を放つことになります。 コンデンサーを別として、適切に設計された電源回路の中心には必ず 電圧レギュレーター があります。その名前が示すように、電圧レギュレーターは安定した電圧を供給し、組み込みシステムが安定して動作できるようにします。電圧レギュレーターは高電圧の入力を受け付け、電子デバイスの動作に必要な電圧に降圧し、同時に安定化を行います。 3.3Vのコンポーネントが一般的になる前は、マイクロコントローラー(MCU)と集積回路(IC)はすべて5Vで動作していました。LM7805は単純な5Vのリニア電圧レギュレーターで、当時良く知られていた部品番号です。実際に、この製品は単純で極めて洗練されているため、今日でも一般的に選択されています。3.3Vが主流の動作電圧となったとき、LM1117-33が効率的なリニア電圧レギュレーターとして使われるようになりました。 リニア電圧レギュレーターの制限 集積回路が3.3V対応に移行した期間があり、この期間にマイクロコントローラーは急速に進化しました。設計者は従来、マイクロコントローラーの入力と出力の数を重視していました。その後で、UARTS、イーサネット、USBなどの統合された機能の数と、急速に増大していく処理能力に注意を向けるようになりました。やがて、リニア電圧レギュレーターは限界に直面することになりました。 これらの手軽なヒートシンクによって、リニアレギュレーターを冷却できます。 多くの人々は、リニア電圧レギュレーターを扱うとき、電流定格を絶対視するという初歩的な過ちを犯します。これが大きな問題となったのは、LM7805電圧レギュレーターの定格は5V、1.5Aだったためです。しかし、実際にこの電圧で扱うと、良くて一部のコンポーネントが溶け、悪ければプロセス内で燃焼が発生する恐れがあります。リニア電圧レギュレーターを選択するときは、最低でもあと3つのパラメーターを考慮する必要があります。 消費電力のレベルは、入力と出力の電圧差を考慮し、その値と負荷電流とを乗算することで計算できます。12Vを5Vにレギュレートし、組み込みシステムが100mAを消費するなら、消費電力は0.7Wです。これを念頭に、LM7805は最大125℃の温度で動作できることに注意します。この温度を超えると、溶解や燃焼など望ましくない現象が発生します。 しかし、TO-220パッケージの一般的なLM7805の熱抵抗は65℃/Wです。すなわち、周囲の環境温度に加えて、1Wごとに65℃だけ温度が上昇します。一部の地域では平均気温が約35℃なので、動作時のLM7805は100℃に達します。定格最大電流である1.5Aの10%未満しか使用していないにもかかわらず、許容される最大温度に近づくことになります。 スイッチング電圧レギュレーターが、文字通り冷静な選択である理由 リニア電圧レギュレーターは、その特性から 電力要件の大きい 記事を読む
設計にフェライトビーズを使用してEMIを低減する方法 設計にフェライトビーズを使用してEMIを低減する方法 1 min Blog PCB設計者 電気技術者 PCB設計者 PCB設計者 電気技術者 電気技術者 「ロケット科学みたいに、さっぱりわからない」というのはよく使われてきた言い回しです。小さなJimmyは九九までロケット科学のようだと言っていました。今日では「ロケット科学」を「電磁気干渉」と置き換えるべきでしょう。EMIは多くの人々がぼんやりとしか理解していないものの1つです。この理由から、私は 正しい接地方法、 AC/DC回路、 高速配線、 差動ペア配線などについて記事を書いてきました。順番から、次に書くべきなのはフェライトビーズを使用してEMIを低減する方法でしょう。フェライトを使うのは少々面倒なので、まず その背後にある理論を理解することが重要です。ほとんどの電子部品は本質的にプラグアンドプレイです。しかし、フェライトはシステム内に設計して組み入れる必要があります。理論を理解すれば、LCフィルター、GNDプレーンと電源プレーンの分離、ソースのノイズのフィルタリングなどを実践できるようになります。 フェライトのLCフィルター 設計者は多くの場合、フェライトビーズのことをローパスフィルターと考えようとします。これらは確かに高周波をブロックしますが、特定の帯域しかブロックしません。それより上の帯域では、固有の容量が優先します。ビーズ自体はローパスフィルターではありませんが、バイパスコンデンサーと組み合わせてローパスフィルターにすることができます。この場合、本質的にLC(コイルとコンデンサー)フィルターとして機能します。フェライトビーズをこのように使用するときに大きな問題の1つは、LC共鳴です。 重要な点を先に述べると、回路の電源ラインにフェライトビーズを使用する場合、バイパスコンデンサーが必要です。低い周波数ではフェライトビーズはコイルとして機能し、電流の変化に抵抗します。すなわち、集積回路が電流のスパイクを引き出そうとすると、ビーズはそのピークに抵抗し、回路の動作の妨げとなります。バイパスコンデンサーは電荷を保存し、これらの電源スパイクを供給するために必要です。またバイパスコンデンサーは一般的にも良いやり方です。 コンデンサーとフェライトを設置したら、高周波をフィルタリングして除去できます。フェライトビーズには、LCフィルターに使用される通常のコイルと比較して、いくつかの利点があります。フェライトビーズは低い周波数で ロールオフが急速です。また、固有の抵抗が存在するため、発生の可能性がある共鳴を減衰させるため役立ちます。多少の減衰能力はあっても、LC共鳴は依然として発生する可能性があります。 大きなコンデンサーを使用するときは、特にリスクが大きくなります。共鳴が発生した場合、 最大10dBのゲインを招くことがあります。フィルターの設計では共鳴を避けるよう注意してください。 フェライトビーズとバイパスコンデンサーを使用して信号をフィルタリング デジアナ混在信号のGND/電源プレーンの分離 EMIが回路内を伝搬する主な手段の1つは、GNDおよび電源プレーンです。混在信号回路では、単一のGND/電源プレーンがアナログ信号とデジタル信号の両方に使用されるため、特にこれが一般的となります。このため、 GNDと電源のプレーンを別にするのが最良ですが、GNDは依然として同じ相対電圧に参照される必要があります。これらの問題から極めて困難な課題が生み出されますが、この課題を解決するためにフェライトビーズが役立ちます。 フェライトビーズは、 アナログとデジタルのGND/電源プレーンを接続するために使用できます。この方法により、両方のプレーンは依然として同じ電圧に参照されますが、互いに絶縁されるようになります。ビーズは、通常ならプレーンから別のプレーンへ直接転送される ノイズをブロックできます。 記事を読む
接地による、ESD損傷からのPCBの保護 接地による、ESD損傷からのPCBの保護 1 min Blog Star Trek の機関室を別とすれば、私は、高校生になるまで、職業として工学を検討したことはありませんでした。とはいうものの、無意識でしたが、間違いなく工学に関心がありました。 Star Trek の機関長の名前を全て挙げられたことを考えると、その兆候は早くからありました。しかしながら、ESDブレスレットをプレゼントされてとんでもなく興奮したときに、将来が決まりました。宝石箱に1つぐらいは入っていませんか? このブレスレットは、自分の皮膚に装着する、網目状のゴムと幅広の金属片と、アース端子に接続するワニグチクリップが付いたケーブルで構成されています。当時のインターネットはダイヤルアップ接続のみでしたが、私は、自分を接地する方法を理解するため、ページの読み込みを待って何時間も費やすことを止められませんでした。ブレスレットを身に付け、友人に頼み込んでコンピューターのRAMのアップグレードをやらせてもらったり、単純にコンピューターを開けさせてもらったりしました。 接地は、金属に触れたりすり足をしないなど、簡単にできますが、ESDの影響を受けやすいものを取り扱う前に接地するのが理想的です。 静電放電 から保護するための接地の利用は、製品開発の多くの段階で必要です。RAMカードなど、静電気の影響を受けやすい製品を扱っている場合、ESDマットの使用や自分自身の接地などをお勧めします。適切に設計することで、製品に対して接地による保護を適用することもできます。効果的な接地方法をPCB設計に適用し、安全な取り扱いへの依存を減らすほうが得策です。未来の顧客や導入者が全て、静電気の影響を受けやすい製品の取り扱い時に過度に自身を接地すると仮定することは合理的ではない、とSpockなら指摘するところでしょう。 GNDプレーンの使用 ESD保護のために接地を使用する方法は多数ありますが、まず最初に挙げられるのはGNDプレーンの使用です。多層設計の採用は、必ずしも実現可能ではありませんが、ESD保護について不安がある場合、GNDプレーンは本当に役立ちます。ご存知のとおり、突然の電圧放電は電磁場を誘発します。 適切に接続されたGNDプレーン は、影響を受けやすいコンポーネントから電流を離して配線することで、電圧放電による損傷を軽減できます。 GNDプレーンを使用すると、GNDトレースへの電源供給における 回路ループの領域を減らす ことができます。回路ループの領域を減らすと、ループ領域内で誘導されるEMIの総量が減ります。同様に、流れるべきでないコンポーネントに流れる可能性のある対応電流も減ります。 GNDプレーンの保護 優れたGNDプレーンがどれだけ機能できるとしても、ESDパルスが直接GNDプレーンに放電すると、GNDプレーンは影響を受けやすいコンポーネントへの直接経路となる可能性もあります。このような損傷を回避するため、必ず、影響を受けやすいコンポーネントの電源とGNDの間にTVS回路を使用して、誘導された電流を迂回させます。正しく実装された場合、コンポーネントに発生する電圧差は、TVSの制限電圧に留まります。 また、影響を受けやすいコンポーネントの電源とGNDの間に高周波の 記事を読む