3D-MID for Layout & Routing

Articles and resources related to 3D-MID and 3D PCB Layout & Routing. Check out Altium.com to learn more about PCB Layout and other relevant topics.

Filter
0 SelectedClear ×
Clear
ADのWB Altium Designerにおけるワイヤーボンディング はじめに ワイヤーボンディング技術は年々進化しており、その使用例や応用分野も広がっています。デバイスがよりコンパクトでパワフルになるにつれて、設計者は複雑なインターコネクトを扱うための正確なツールが必要とされ、Altium Designerは、チップ・オン・ボード(COB)設計やキャビティ内のスタックダイ、その他の高性能アプリケーションでのワイヤーボンディングを効率化する機能を提供しています。この記事では、Altium Designerの高度なワイヤーボンディング機能と、それが信頼性をどのように保証するかについて探ります。 Altium Designerにおける高度なワイヤーボンディング技術 Altium Designerのワイヤーボンディングツールは、新しい機能の範囲を提供し、PCB設計に高度なボンディング技術を取り入れることを容易にしています。いくつかの注目すべき機能を見てみましょう: キャビティ内のスタックダイ用ワイヤーボンディング:ユーザーは、キャビティ構造内のスタックダイに必要な複雑なインターコネクトを簡単に扱うことができるようになりました。これは3D集積回路としても知られています。レイヤースタックマネージャーのリジッド&フレックスアドバンスドモードを利用することで、ダイ構造とダイパッドを簡単に描画し、異なるスタックアップに配置して3D構造を作成することができます。Altium Designerの3Dビューでのワイヤーボンドの可視化機能により、設計者はワイヤーボンドのループ高さ、長さ、直径、およびパスが設計の電気的および機械的要件に最適化されていることを確認できます。これらの3Dビジュアライゼーションは、高度なコンピューティングおよびモバイルデバイスで使用されるスタックダイ構造の典型的な細ピッチおよび高ピン数を管理する際に重要です。 キャビティ内のスタックダイワイヤーボンディング(3D集積回路) ダイ間ワイヤーボンディング:Altium Designerのワイヤーボンディングツールは、ダイ間ワイヤーボンディングを可能にします。これは、寄生インダクタンスと信号干渉を最小限に抑えるために使用される技術です。複数のダイを中間のフィンガーパッドや銅の流れなしで直接ワイヤーボンドで接続することができ、ループ長を短縮し、高周波および高電力アプリケーションの性能を最適化します。 ダイ間ワイヤーボンディング ダイから銅プールへのワイヤーボンディング:多くのパワーエレクトロニクスや高電流アプリケーションでは、ダイを直接銅プールに接続することが、効果的な熱および電気性能を実現するために不可欠です。Altium Designerのワイヤーボンディングツールは、PCB上のダイと銅プールエリアとの間の正確なワイヤーボンディングを可能にすることでこれをサポートします。この方法は、熱の放散と電流処理能力が重要なパワーマネジメントモジュールなどの高電力設計に特に有用です。大きな銅プールに直接ボンドワイヤーを接続することを可能にすることで、設計者は電気および熱性能が最適化され、追加のインターコネクトやビアの必要性を減らすことができます。 銅プール上の複数のワイヤーボンド 同じダイパッドのための複数のワイヤーボンド:Altium Designerのワイヤーボンディングツールは、電流運搬能力を高め、インピーダンスを減少させるために、同じダイパッドからの複数のワイヤーボンドもサポートします。この技術は、ダイを通じてより高い電流が流れるパワーエレクトロニクスや高性能アプリケーションにおいて特に重要であり、電気負荷を分散させるために追加のワイヤーボンドが必要になります。複数のワイヤーボンドは、個々のワイヤーボンドにかかるストレスを減少させることで機械的信頼性も向上させ、高ストレス環境での熱および電気性能を強化します。 パッドの整列と向き:成功したワイヤーボンディングプロセスには、適切なパッドの整列と向きが不可欠です。Altium
TotM - 2024年6月 Altium Designer: PCB設計革新をリードする 電子設計の急速に進化する世界において、Altium Designerは革新のリーダーとして輝き、PCB(プリント回路基板)設計における可能性の限界を常に押し広げています。包括的で使いやすいツールで知られるAltium Designerは、世界中のエンジニアやデザイナーの成長するニーズに応える最先端の機能を一貫して導入してきました。その多くの進歩の中でも、特に革新的な3つの機能が際立っています:3D-MID設計、高速設計の改善、およびインタラクティブルーティングの強化です。これらの機能は設計プロセスを合理化し、電子製品の性能と信頼性を大幅に向上させます。 3D-MID設計:Altium DesignerによるPCB革新の新たな次元 Altium Designerは、設計プロセスにおける3D成形インターコネクトデバイス(3D-MID)技術の採用をリードすることで、PCB設計を再定義しています。この革新的なアプローチにより、電気回路を三次元のプラスチック部品に直接成形することが可能となり、機械的、電子的、および視覚的要素を統合した一体構造を実現します。Altiumの3D-MID技術に関する専門知識は、消費者電子機器、自動車、ヘルスケア、航空宇宙、ウェアラブル技術を含む主要産業を変革しており、空間と重量の大幅な削減と機能統合の強化を可能にしています。これらの進歩は、効率と性能に関して新たなベンチマークを設定しています。 変革的な3D-MID機能 Altium Designerが3D-MID技術を採用したことは、その提供内容において重要なブレークスルーを示しています。この技術により、機械的および電子的機能を一つの統合されたコンポーネントに融合させる複雑な三次元回路構造の作成が可能になります。3D-MID技術を採用することの利点は広範にわたり、軽量化されたコンポーネント、強化された機能性、設計の多様性の増加に至るまで様々です。このソフトウェアは、デザイナーがほぼあらゆる想定される形状を持つ複雑な多層設計を構築できるようにすることで、力を与えます。このような柔軟性は、空間と重量を最小限に抑えることが最優先事項である分野では非常に貴重です。例えば、自動車および航空宇宙産業では、軽量の電子部品が燃料効率と全体的な性能を大幅に向上させることができます。同様に、ウェアラブル技術では、コンパクトで軽量な設計への重点が、ユーザーの快適さと実用的な機能性を確保するために重要です。 高度な設計ツール Altium Designerは、デザイナーに3Dオブジェクトを視覚化し、操作するための洗練されたツールを提供し、PCBの電子部品と機械要素をシームレスに統合します。この統合は、設計の性能と製造可能性を向上させるために重要です。ソフトウェアは、従来の2D PCBレイアウトから高度な3D設計へのスムーズな移行を提供し、包括的な視覚化および分析ツールを装備しています。これらのツールにより、デザイナーは設計のあらゆる側面を徹底的にシミュレートし、厳格な性能基準に準拠していることを確認できます。 設計環境内で3Dオブジェクトを視覚化し、調整する能力は、複雑な幾何学を作成するプロセスをより直感的で効率的にすることを可能にします。この効率性は、プロトタイピングを加速し、市場投入までの時間を短縮し、革新的な製品を作成する際にデザイナーに重要な利点を提供します。 業界の応用と利点 3D-MID技術は、さまざまな業界で利用されており、顕著な利点をもたらしています。消費者向け電子機器では、複数の機能を単一のコンパクトなユニットに統合することを可能にし、機能性とユーザーエクスペリエンスの両方を向上させます。例えば、スマートフォンやウェアラブルは、より小さく軽量になりながら、より多くの機能を提供できます。 自動車セクターでは、3D-MID技術により、センサーや制御ユニットを直接車両の構造に統合することができます。この改善により、信頼性が向上し、組み立てプロセスが簡素化され、製造がより効率的になり、生産コストが低下します。 ヘルスケアデバイスも3D-MID技術で大きな改善を見せています。より小さく、軽量で機能性の高い医療機器の設計を可能にし、より進んだ診断および治療ツールの開発につながり、患者の成果を改善することができます。 高速設計の改善:Altium
プリントエレクトロニクス設計とは何ですか? プリントエレクトロニクス設計とは何ですか? プリントエレクトロニクス設計とは何か?答えは簡単です。それは電子設計です。電子設計を行うために、回路理論、数学的計算、コンピュータベースのシミュレーションを利用します。プリントエレクトロニクス材料を使用して製品の電気的機能と性能を設計します。材料が重要なポイントであり、プリントエレクトロニクスに使用される材料は、従来のPCBで使用される材料とは異なる電気的性能特性を持っています。さらに、 プリントエレクトロニクス材料を使用して異なる方法で電子機器が構築されます。PCBのトレースがどのように行われるかはよく知られています。最初に、電子エンジニアが設計し、電気的要件に基づいて寸法を定義し、設計が完成した後、製造ファイルがリリースされます。 製造では、例えば、マスクされたUV感光性フォトレジストフィルムをUV光にさらすことによって、設計ファイルに従ってPCBの銅上に電気回路をコピーすることでPCBが製造されます。次に、UV光にさらされていない銅がエッチングで取り除かれます。結果として、設計通りのトレースが得られます。その寸法は正確であり、電気的要件を満たしています。プリントエレクトロニクスでは、新しい設計ルール、材料、製造方法を使用して同じ結果を達成する必要があります。 プリントエレクトロニクスの設計の入力と出力は、基本的にPCB設計のそれと同じです。入力と出力の間のコツも同じです:エレクトロニクス設計です。材料情報と設計ルールを設計プロセスに取り入れ、出力は製造ファイルです。PCBとプリントエレクトロニクスのエレクトロニクス設計において同じ物理法則が有効であり、これらが何ができるかの境界を設定します。PCBで作られた回路とプリントエレクトロニクスで作られた回路は、全く同じ機能を持つことができますが、回路設計は見た目も実際にも異なります。これは、電気回路に使用される材料の物理的能力と限界のためです。両方の回路で、インピーダンスを介して電圧差を適用することで電流を流す必要があります。両方の回路で同じ電流を流すためには、インピーダンスを同じレベルに調整するか、回路固有の電圧レベルを設定する必要があります。これらのパラメータは、プリントエレクトロニクス設計で通常扱う必要があります。インピーダンスを微調整し、正しい電圧レベルを設定することで、最適な解決策を探しています。 エレクトロニクス設計では、最終製品の材料特性を知ることが不可欠です。PCBからは、銅の厚さ、シート抵抗、その熱特性、PCB材料の誘電率などを知ることができます。印刷エレクトロニクスからも、まったく同じパラメータを知る必要があります。銀インク導体の最終厚さは何か、その平方抵抗はどのくらいか、基板材料の誘電率はどのくらいか?これらの新しい材料に対して、エレクトロニクス設計を実行します。オームの法則、キルヒホッフの回路理論の法則、マクスウェル方程式も印刷エレクトロニクスに適用されます。市場には数百種類の異なる導電性インクがあり、それぞれに独自の平方抵抗率があります。一部のインクは高い導電性を持っています(それでも通常、純銅よりはるかに高い)が、硬化後には全く伸びることができません。他のインクは硬化後に伸ばすことができますが、導電性はさらに悪いです。エレクトロニクス設計では、最終硬化後に使用されるインクの平方抵抗がどのくらいであるかを理解することが重要です。 別の設計上の課題は、印刷エレクトロニクスに使用される材料パラメータが使用される生産方法に依存することです。導電性インクの印刷方法、これらの硬化方法、導体の下に印刷された他のインクがどのように影響するか、例として、最終的な平方抵抗に影響を与えます。生産を変更する場合は、レイアウト設計を変更する必要があるかもしれません。または、その生産は設計の電気回路要件に応じて設定されなければなりません。印刷エレクトロニクスの製造方法を知っていることが非常に重要です。これはPCBでは違いはありませんが、これらがどのように構築されているか、この特定の生産の制限は何かを知る必要がありますが、PCBでは、製造方法はより標準化されており、各製造は基本的にわずかな能力差を持って似ています。印刷エレクトロニクスでは、まだこのレベルにはありません。 導電性インクは、いくつかの方法で印刷することができます。最も使用されている方法は、スクリーン印刷とインクジェット印刷であり、Googleで検索すると他にも多くの方法が見つかります。印刷プロセスに関連する重要なことは、製造能力とその制限を理解することです。トレース間に必要な最小クリアランスはどれくらいですか?何層の導電層を使用できますか?トレースの最小幅と最大幅はどれくらいですか?使用する予定の生産の設計ルールに慣れ、これらの設計ルールに対して設計をチェックしてください。PCB設計ツールで利用可能な多くの設計ルールは、正しいルール定義で印刷エレクトロニクス設計にそのまま使用できます。製造に電子設計ツールがサポートしていない設計ルールが含まれている場合、手動で設計ルールチェックを行う必要があります。たとえば、印刷された誘電体で隔てられた複数の導電層を使用できる場合、1層目と2層目の導電層トレース間には、同じ層上に印刷されたトレース間と全く同じ設計ルールが適用されることを意味します。そして、これは標準のPCB設計ツールではサポートされていません。 また、印刷された電子機器には機能を得るためのコンポーネントが必要であり、印刷された電子回路上のコンポーネントの組み立ては標準的なはんだ付けプロセスではありません。印刷電子機器に使用される典型的な材料はプラスチックであり、これはPCBやFPCと比較して熱特性が異なることを意味します。これは、接着材料も異なることを意味します。低温はんだ、導電性接着剤、またはその他の接着材料は、印刷電子機器のSMAに典型的であり、これらはコンポーネントのための特別なフットプリントを必要とする場合があります。コンポーネントの下にトレースを配置できますか?特別なキープアウトエリアが必要ですか?印刷電子機器にどのようなコンポーネントを配置できますか?これらは、PCBのSMAと比較して異なる視点から考える必要がある質問です。さらに、表面実装組立のための製造ファイルは異なる場合があります。ペーストステンシルファイルを使用できますか、それとも代わりにディスペンシンググルーマップを提供する必要がありますか?SMAが何を要求するか事前に確認してください。 プリントエレクトロニクスは比較的新しい技術領域であるため、材料特性や製造方法に関する情報は、PCBと同じ規模で利用可能ではありません。さらに、異なる電気特性を持つプリント導電性インクが大量に存在し、特性は製造装置や方法によって完成品でどのように表れるかが異なります。設計は、新しい材料や製造方法に対する電子工学の理論を実装することに依存しています。私にとって、電子設計とは、理論、物理学、数学を利用して電気的機能性と性能を保証することを意味します。これらの方法は、入力として材料の知識を必要とします。プリントエレクトロニクスでは材料情報が不足しており、時には計算の裏付けなしに決定が行われることがあると私は見てきました。それは設計ではなく、推測に過ぎません。そして、それは電子設計ではありません。 次の PCB設計でAltiumがどのように役立つか知りたいですか? Altiumの専門家に相談するか、Altium Designerのドキュメントで 印刷電子機器について読むか、 印刷電子材料や Tactotekでの印刷電子機器に関するポッドキャストを聞いて、基板に直接電子回路を印刷する方法について詳しく学んでください。
過去と未来の技術、プリントエレクトロニクス プリントエレクトロニクス:過去と未来の技術 プリントエレクトロニクス(PE)は、新しく急速に成長している相互接続ビジネスです。その起源は、家電製品用のプリントフレキシブルキーボードや、派手な雑誌や文献での技術の拡大にあります。PEの皮肉な点は、この技術が恐らく第二次世界大戦中に最初に使用され、すべてのプリント回路がその起源をPEに負っていることです。 アプリケーション PEについて最もエキサイティングなことは、それが開く新しいアプリケーションと市場の全てです。図1には、現在PE開発者によって追求されている市場のうちの10つが示されています。これらの市場の大多数において、アプリケーションは短命であり、実際のPE基板は使い捨て可能です。フレキシブルキーボード、プリントグルコースセンサー、プリントRFIDタグなど、いくつかのアプリケーションは既に確立されています。一方で、プリントバッテリーと電気泳動電解質で動く化粧品用しわクリームマスクなど、このリストにさえ載っていないものもあります。 材料 材料はPE開発者にとって依然として主要な課題です。多くのPEアプリケーションがコストに敏感であるため、現在の銀の導電性インクやポリイミドフィルムの絶縁体は、そのアプリケーションにとって高すぎます。現在の絶縁体候補は表1に、導体は表2に示されています。 研究では、基板としてのナノテクノロジーがガラス、プラスチック化紙、PET、導体としては銅、グラファイト/グラフェン、カーボンナノチューブ(CNT)を支持しているようです。 表2: 印刷エレクトロニクスに適した導電材料とインク 製造プロセス 印刷エレクトロニクスは、雑誌のような低コスト印刷を想起させます。その技術は、私たちの最も古く、最も自動化された技術の一つです。しかし、図2に示されている他の印刷技術もあります。 インクの印刷方法は、その解像度(マイクロン単位)と秒速平方メートルでのスループットの機能として特徴づけられます。 印刷に関するより詳細な表は表3に示されています。それは速度、解像度、フィルムの厚さ(マイクロン単位)、および使用できるインクの粘度をリストしています。 設計ツール Altium Designer® 19にアップグレードした場合、プリントエレクトロニクスの設計が可能であることに気付いたかもしれません。これは幸運なことです。なぜなら、多くのアイデアや革新的な電子機器がプリントエレクトロニクスの基板の形を取る可能性があるからです。3Dプリンティングは現在、銀ペーストや様々な絶縁体、抵抗性および容量性インクを使用してプリントエレクトロニクスを作成することができます。近い将来、半導体(P型およびN型)インクやOLEDペーストも利用可能になるでしょう。技術がより一般的になるにつれて、他の特殊インクや紙に似た改良された基板も開発されるでしょう。 プリントエレクトロニクスに関する包括的で詳細な説明については、Joseph Fjelstadの電子書籍「Flexible Circuit Technology-Fourth
モノのインターネットのハードウェア プラットフォームのフレキシブル化 Thought Leadership モノのインターネットのハードウェア プラットフォームのフレキシブル化 子供の頃に熱中したり執着したりしたものを覚えていますか? 私が若かった頃、誰もがポケモンと、子供でも触れる電子機器に熱中していました。これら2つの熱狂はやがて、 たまごっち という最終的な流行に結びつきました。これは大ヒットして、携帯電子機器の人気と、小さく非現実的な動物に対しての子供たちの愛情を生み出しました。最近では、PCBにおける2つの熱狂、すわなちフレキシブル電子回路とモノのインターネット(IoT)が結合しました。自作用開発基板のようなハードウェア プラットフォームはIoTの誕生に役立ち、フレキシブル ハイブリッドエレクトロニクス(FHE)はそのIoTを成熟へ導くために役立っています。技術者は、Arduinoのような大きなブランドと互換性のあるフレキシブルな基板や周辺機器の設計を開始しています。IoT開発者が必要とするコンポーネントを搭載した、使いやすい基板を設計することで、この動向に加わることができます。 フレキシブルなハードウェア プラットフォームの利点 完全フレキシブルおよびリジッドフレキシブルPCBは長年にわたり、 航空宇宙 などハイテク産業に限って使用され、ローバーが他の惑星まで飛行するために役立っていました。しかし今日では、これらのPCBの利点は地球に戻って、開発基板やその周辺機器に利用されるようになっています。フレキシブルなハイブリッド電子機器では、従来型電子機器の低コストや性能と、フレキシブル回路の容積やフォームファクターの利点を組み合わせて活用しています。 一部の組織は 将来の完全にフレキシブルな電子回路 を構想していますが、現在のところはハイブリッドで妥協する必要があります。フレキシブル ハイブリッド電子回路は、フレキシブルな基板に従来型のコンポーネントを実装するものです。従来型の電子機器コンポーネントは長年にわたり、コスト、速度、消費電力の点で高度に最適化が行われてきました。 フレキシブルなアナログ も多少存在しますが、比較すると性能的には見劣りするものです。また、十分に使用され実績のあるチップを使い慣れていることから、デバイスで簡単に使用できます。 しかし、リジッドPCBには多くの欠点があります。主な問題点は曲がらずに折れる傾向があること、サイズ、および動的な圧力を処理できないことです。フレキシブル基板にコンポーネントを取り付けることで、これらすべての問題を解決できます。言うまでもなくFHEは曲がるように作られており、一部のFHEは 200,000回もの曲げ耐性 があります。信頼性に加えて、折り曲げ可能な基板はフォームファクターも小さく、通常のPCBでは収まらないような領域にも折りたたんで収納可能です。
Altium Need Help?