PCB Design and Layout

Create high-quality PCB designs with robust layout tools that ensure signal integrity, manufacturability, and compliance with industry standards.

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
わずか4つのステップで電源分配ネットワークを最適化する方法 わずか4つのステップで電源分配ネットワークを最適化する方法 1 min Thought Leadership 最近の設計者は、電源分配ネットワーク(PDN )インテグリティという、従来考える必要のなかった問題に直面しています。私たちは皆、何十年もの間、シグナルインテグリティーの必要性を感じてきましたが、その間、パワーインテグリティーは、脇に置かれてきました。従来は、専用の電源プレーンを使用するスペースが多くありました(動作に必要なものをデザインに容易に含めることができました)。 しかし、設計の物理的な制限を押し広げ、より小さなフォームファクターに、より多くのコンポーネントを詰め込み続ける中、フォームファクターの縮小を続けながらPDN を最適化する方法が必要となっています。物理的な試作やシミュレーションのエキスパートに頼らないで、設計環境で直接、電源プレーンの形を最適化できれば、どうでしょう? PDN Analyzer powered by CST® は、Altium Designer ワークスペース内でPDN インテグリティーへの道を提供します。従来は非常に長く骨の折れた解析プロセスを、単一の設計環境で完了できる複数のステップに分割できるようになりました。リアルタイムで変更を行い、解析を再実行できます。 PDN Analyzer を使って、わずか 4 つのステップで簡単に PDN を最適化できる方法を説明します。 記事を読む
設計の問題を手遅れになる前に対処する方法 設計の問題を手遅れになる前に対処する方法 1 min Thought Leadership 製造後の問題に悩まされることがないように、PCBの品質テストを超えてどのような対策を講じていますか?その鍵は分析の自動化にあります。続きを読んでさらに詳しく学びましょう。 “ 現在製造中のボードでPDN Analyzerを実行し、自分が犯したミスをすでに発見しました。ビアで覆われたフットプリントを持っていて、それらをブラインドビアにするのを忘れていました。その結果、パワープレーンが消費されてしまっていました。製造に入る前にこれらの問題を特定するのに非常に役立つツールであることが証明されています。” RFエンジニア - 政府契約業者 誰もが同じ悪夢を見ます。新しくリリースした製品が、高価なエラーのために現場での対応が必要になったり、何時間もかけて設計した製品がリコールされなければならなくなったりするニュースの悪い側で目覚めることです。 これらの状況は、会社全体に悪影響を及ぼす可能性があります。そして、消費者が声を上げるこの時代には、世界中の人々が見ることができるヘイトフィルドのハッシュタグを着地させるかもしれません。このシナリオを考えると、現場でのエラーの影響を軽減するために何かできることはあるのか、それともそれが運が味方しない時のエンジニアリングの性質なのかと疑問に思います。 現場での災害への伝統的な道 あなたはボードの加速寿命試験の最終結果を受け取ったばかりで、すべてが良好で生産の準備が整っているように見えます。この寿命試験プロセスの背後にある前提はかなり単純です - 生産に相当するプロトタイプが品質テストフェーズを通過すれば、信頼性の高いPCBを持つことになるはずですよね?間違いです。 実際には、PCBが現場でさまざまな条件と使用ケースの下で耐える長期間のストレスをテストすることは不可能です。今日私たちが設計する製品は、主に密度と速度によって駆動される増加したICの消費電力を持っています。そして、この増加した密度と速度のニーズを、電力需要の削減と組み合わせると、電力分配ネットワーク()は、増加する電流速度でより低い電圧を供給する電圧レールの複雑な迷路になります。 この高電流密度の混合物を投げ合わせると、次のような状況に自分自身を見つけるかもしれません: ピンチポイントからのPCBの剥離と融合。 熱による銅の抵抗の増加が起こり、電圧の低下を引き起こす。 熱の影響により、ますます複雑な電力管理の課題が増加。 増加したボード密度と速度を低消費電力でナビゲートすることは容易な作業ではありません。では、保守的な経験則や限定的なプロトタイプシミュレーションに頼ることなく、ボードに十分な金属を提供したことを確認するためには、どうすればよいのでしょうか? 生産前ではなく、生産後の変更を理解する 記事を読む
3D STEPモデルを使用してデザインの再設計を減らす 3D STEPモデルを使用してPCBデザインの再設計を減らす 1 min Thought Leadership 機械設計のワークフローを電気設計ツールに統合することは、今日の成功したPCB設計プロセスにおいて必要不可欠な要素となっています。しかし、ECADとMCADの世界の間で不正確な設計データを行き来させることは、設計チームの双方にフラストレーションを感じさせるだけでなく、PCBを最終組み立てに適合させるために必要な設計の回転数を劇的に増加させる可能性もあります。電気設計ツールの3D機能に関わらず、正確なコンポーネントの3Dモデリング情報はこのプロセスの成功にとって重要です。 なぜ3D STEPモデルなのか? 機械設計のワークフローを電気設計ツールに統合することは、今日の成功したPCB設計プロセスにおいて必要不可欠な要素となっています。しかし、ECADとMCADの世界の間で不正確な設計データを行き来させることは、設計チームの双方にフラストレーションを感じさせるだけでなく、PCBを最終組み立てに適合させるために必要な設計の回転数を劇的に増加させる可能性もあります。電気設計ツールの3D機能に関わらず、正確なコンポーネントの3Dモデリング情報はこのプロセスの成功にとって重要です。 ここでの問題は何ですか? MCADツールは伝統的にすべての機械データを提供しますが、一部は古い方法であるDXFやIDFファイルを使用してそのデータを交換に依存しています。IDFはコンポーネントボディの単純な押し出しを作成するのに役立つ場合がありますが、IDFファイルの制限のために多くの詳細が見逃されます。STEPモデルの統合は、3次元データのはるかに高いレベルを提供し、それはMCADの世界に渡すことができるだけでなく、直接ECADツールで使用することもできます。 STEPモデルの統合方法はツールセットによって異なる場合があります。モデルをフットプリントに簡単にインポートできるだけでなく、3D環境で視覚的に操作できる能力も重要です。PCBツールと異なる3Dビュー環境との間を切り替える必要があると、このプロセスにさらに障害が加わる可能性があります。 3D環境でのステップモデル 解決策 Altium Designer®のようなネイティブ3D設計環境で3Dモデルを追加して操作することで、ECADとMCADの世界をできるだけ効率的に統合します。 フットプリントに3D STEPモデルを埋め込むホワイトペーパーを無料でダウンロードして、設計の回転数を減らしながら、初めてボードが正しくフィットすることを確実にする方法を確認してください。 記事を読む
PCB設計における上位6つのDFM問題とDFMの課題 PCB設計における上位6つのDFM問題 1 min Thought Leadership PCBデザイナーとして、さまざまな要件と期待を管理する必要があります。電気的、機能的、および機械的な側面を考慮する必要があります。さらに、PCBレイアウトは、可能な限り最高の品質で、可能な限り低いコストで、タイムリーに生産されなければなりません。そして、これらの要件をすべて通じて、DFM(製造可能性のための設計)も考慮する必要があります。これは PCB設計 プロセスの大きな部分であり、適切に行われない場合、頻繁に問題を引き起こすことがあります。PCBデザインにおける3つのDFMの問題を見てみましょう。 PCBレイアウトにおける一般的なDFMの問題 CADツールに安心を見出すのは簡単ですが、CADツールが簡単に解決できないDFMの問題を作り出すことを許してしまうかもしれません。回路基板がすべての電気的ルールチェックに合格し、電気的に正しい場合でも、製造可能でない場合があります。なぜこのようなことが起こるのでしょうか?PCB設計ツールは、電気的に機能的 かつ大量生産で製造可能な回路基板レイアウトを作成するのに役立つはずではないでしょうか? PCBのレイアウトが非常に複雑になり、DFM(設計製造統合)の問題を多く隠してしまうことがあります。これらのDFMの問題のいくつかは、組み立て、電気テスト、または製造に問題を引き起こしますが、製造プロセスについてより多くを知っていれば、これらを克服することができます。製造プロセス全般についてもっと学ぶには、 Altium PCB Design Blogのこの記事をご覧ください。設計レビュー中に製造業者が何を探しているかをもっと知りたい場合は、ここにPCBレイアウトで彼らが特定しようとする最も一般的なDFM問題がいくつかあります: 不均一なSMDパッド接続 SMDパッドの誤ったはんだマスク開口部 SMDパッドのオープンビア アシッドトラップ クリアランス 一般的な信頼性標準違反 これらの問題を防ぐためには、PCBレイアウトツールの設計ルールに依存することが重要であり、これにより回路基板を最小限の設計レビュー時間で製造に移行できるようになります。 不均一なSMDパッド接続 小型のSMD部品、例えば0402、0201などは、リフローはんだ付け中のトゥームストーニングを防ぐために均一な接続が必要です。BGAパッドにも同様のことが当てはまり、信頼性の高いはんだ付けを保証するためです。これは、コンポーネントのフットプリントに正しいパッドサイズを配置することによって簡単に実現できます。一般的なコンポーネントには定義されたパッドサイズ(例えば、 記事を読む
高速設計プロセスにおけるシグナルインテグリティ分析の採用方法 高速設計プロセスにおけるシグナルインテグリティ分析の採用方法 1 min Thought Leadership 設計が複雑になるにつれて、信号整合性の問題のリスクが高まります。設計プロセスに信号整合性シミュレーションを採用することで、リスクを軽減し、リソースを保護することができます。さらに詳しく読んでみましょう。 現実の信号の動作は、大学で教えられる理論的な応用とはしばしば大きく異なり、その結果、理論から実践への移行は予測不可能な結果につながることがよくあります。信号は損失、クロストーク効果、反射、スキン効果など、さまざまな方法で乱される可能性があります。これらの信号の乱れは、しばしば高額な代償を伴う深刻な影響を引き起こす可能性がありますが、そもそもこれらの問題をどのように回避できるのでしょうか? リスクとは何か? 信号の歪みに関連するリスクと結果は、原因によっていくつかあります。例えば、反射の問題を見てみましょう。信号は送信機から受信機に送られますが、受信機のピンでエネルギーのオーバーフローが観察されることがあります。これは下の図1で示されています。 図1 - 受信機のピンから観測されるエネルギーのオーバーフロー この効果を観察するとき、チップを焼損させる可能性のあるオーバーシュートや、デバイスを二回切り替える可能性のあるアンダーシュートなど、信号のさまざまな歪みが見られます。この状況では、デバイスを再び切り替える可能性のあるリングバックにも注意を払うべきです。どちらの場合もリスクは高く、以下を含みます: プロトタイプと再設計のための追加コスト。 製品が市場に出たときに機能しないシステム。 顧客から返品された際の修理または交換。 では、設計で信号整合性の問題を避けるにはどうすればよいでしょうか?物理的なプロトタイプを必要とせずに、初期開発段階で信号整合性を分析する方法があったらどうでしょうか? Altium Designer®での信号整合性分析 Altiumには、ボード上の信号の乱れや歪みを検出するのに役立つ信号整合性分析ツールが含まれています。これは、設計プロセスの早い段階で信号の問題を検出するのに役立ち、レイアウトを行う際により良い判断を下すことができます。ボードが完成し、ルーティングとすべての銅領域が配置された後、ポストレイアウト分析を利用して、信号の実際の乱れを確認することができます。 信号整合性分析によるリスクの軽減 設計が時間とともに複雑になるにつれて、設計内の信号の乱れの危険性が高まります。Altiumの信号整合性シミュレーションを活用することで、高速アプリケーションの複雑さをうまくナビゲートすることが容易になります。 設計フローに信号整合性シミュレーションツールを導入する方法についてもっと学びたいですか?無料のホワイトペーパー 高速設計プロセスにおける信号整合性の採用を今すぐダウンロードしてください。 記事を読む
バックドリルで解決 - PCB上の信号歪みを減らす方法 バックドリルで解決 - PCB上の信号歪みを減らす方法 1 min Thought Leadership 年月を経るにつれて、エンジニアはプリント基板のバックドリル設計において、高速デジタル信号の整合性を歪ませる可能性のあるノイズに対処するためのいくつかのアプローチを開発してきました。そして、私たちの設計が新たな境界を押し広げるにつれて、新しい課題に対処するための技術の複雑さも増しています。今日、デジタル設計システムの速度はGHzに達しており、これは過去よりも顕著な課題を生み出しています。エッジレートがピコ秒単位である場合、任意のインピーダンスの不連続性、インダクタンスの乱れ、または寄生容量は、信号の整合性と品質に悪影響を及ぼす可能性があります。信号の乱れを引き起こすさまざまな原因がありますが、特に見過ごされがちな一つの原因はビアです。PCB信号の歪みを減らす方法についての詳細は、以下をお読みください。 シンプルなビアの中の隠れた危険 高密度インターコネクト(HDI)、多層カウントプリント基板、厚いバックプレーン/ミッドプレーンでは、ビア信号がジッターの増加、減衰、および高いビットエラーレート(BER)に苦しむことがあり、これにより受信側でデータが誤って解釈される可能性があります。 たとえばバックプレーンとドーターカードを例に取りましょう。インピーダンスの不連続に関しては、回路基板において焦点はしばしばそれらとマザーボードとの間のコネクタにあります。通常、これらのコネクタはインピーダンスの面で非常によくマッチしているものの、実際の不連続の原因はPCBデザインのビアです。 データレートが増加するにつれて、スルーホール(PTH)ビア構造によって導入される歪みの量も、通常、関連するデータレートの増加よりも指数関数的に高い割合で増加します。例えば、6.25 Gb/sのデータレートでのPTHビアの歪み効果は、3.125 Gb/sでのそれの2倍以上になることがよくあります。 最後に接続された層を超えて底部と上部に不要なスタブが存在することで、ビアは低インピーダンスの不連続として現れます。エンジニアがこれらのビアの余分な容量を克服する一つの方法は、その長さを最小限に抑えてそのインピーダンスを減らすことです。ここでバックドリリングが登場します。 長いビアスタブの信号歪み [1] バックドリリングでバックアップする バックドリリングは、ビアスタブを取り除くことでチャネル信号の整合性を最小限に抑えるために、広く受け入れられているシンプルで効果的な方法として使用されてきました。この技術は、従来の数値制御(NC)ドリル装置を使用する制御深度ドリリングとして知られています。そして、この技術はバックプレーンのような厚い基板だけでなく、あらゆるタイプの回路基板に適用できます。 バックドリリングプロセスには、不要な導電性スタブを取り除くために、元のビア穴を作成するために使用されたドリルビットよりもわずかに大きな直径のドリルビットを使用することが含まれます。このビットは通常、プライマリドリルサイズよりも8ミル大きいですが、多くのメーカーはより厳しい仕様を満たすことができます。 バックドリリング手順が近くのビアによってトレースやプレーンをドリルスルーしないように、トレースとプレーンのクリアランスが十分に大きい必要があることを覚えておく必要があります。トレースやプレーンをドリルスルーするのを避けるためには、10ミルのクリアランスが推奨されます。 一般的に、バックドリリングによるビアスタブ長の減少は多くの利点をもたらします。これには以下が含まれます: 決定論的ジッターを桁違いに減少させ、BERを低下させる。 インピーダンスマッチングの改善による信号減衰の減少。 スタブ端とチャネル帯域幅アンプからのEMI/EMC放射の減少。 共振モードの励起とビア間クロストークの減少。 連続積層よりも製造コストを低減しつつ、設計およびレイアウトへの影響を最小限に抑える。 記事を読む
Draftsman: ソフトウェアにドキュメント作成をさせよう Draftsman: ソフトウェアにドキュメント作成をさせよう 1 min Blog 最後のルーティングを終え、最後のビアをステッチし、最後のプアを行いました。ついにその基板の作業が終わりました — お祝いする時です!(または、次のプロジェクトに移る時です。) 待ってください!まだ終わっていません。 まだ、文書作成が残っています - 製造図面、組立CAD図面、製造工場があなたの慎重に作り上げた芸術作品を実際の電子製品に変えるために必要なすべてのものです。残念ながら、PCBレイアウトソフトウェアでアクセスできるツールは、このプロセスを長く、手動で、おそらくエラーが発生しやすいものにするでしょう。それはなぜでしょうか?EDAベンダーは何年にもわたり、多大なお金をかけてPCB設計プロセスを改善してきました。ルーティングは以前よりも速く、簡単になりました。フットプリントの作成?問題ありません。そのためのウィザードがあります。しかし、CAD図面を作成するところになると、私たちは90年代(あるいは80年代)に戻ってしまいます。 PCB Design School提供の画像 [1] 文書化:悪いこと、もっと悪いこと、最悪なこと 年月を経るうちに、設計サイクルのどれくらいがドキュメント作成プロセスによって消費されるかについての見積もりを聞いてきました。保守的な数字では10%ほど低いですが、他の統計では最大40%にもなると言われています!それは、設計に何の価値も加えないものに、驚くべき量の時間を費やすことを意味します。そうです – 良いドキュメントは、設計に絶対に価値を加えません。あなたがPCB設計システムに入れたものよりも良くすることはありません。最善を尽くせるのは、あなたが行ったことを適切かつ正確に紙に、またはファイルへの印刷(PDF)の形で仮想的な紙に転送することです。これにできるだけ少ない時間を費やし、あなたが情熱を持っている(そして報酬を得ている)こと — 設計に戻るべきです。もちろん、手を抜くわけにもいきません。不十分なドキュメントの結果として生じる可能性のある問題には、製造工場との往復のメールや電話による時間のロスから、誤って製造された基板に至るまで様々です。どちらもあなたを良く見せるものではありません。 文句を言っても始まらない。では、その図面エディターに取り掛かりましょう。願わくば、シートの境界線をどこかのライブラリに保存しておいたことでしょう。さもなければ、手描きでワクワクするような1時間が待っています。もしかすると、MCADの人がDXFで何か持っているかもしれませんね。前回の設計からコピー&ペースト?それでやるしかないでしょう。(待って、それって製造業者から古いIPC規格を指摘されて連絡があったやつだっけ?)それでやるしかない。次に進みましょう! トップビューとボトムビューを含む組立図を作成しましょう。全てを一枚のシートに?いいえ、その方法ではできません。PCBに素敵なSTEPモデルを 追加したので、ボードのプロファイルを見るために側面ビューを追加してください。同じファイルで?うーん、それもできないようです。JPEGで妥協するしかありませんね。もっとコピー&ペーストが必要かもしれません。CAD図面を得るためには、どのレイヤーをオンにする必要がありますか?この小さなプレビューウィンドウでは、詳細が表示されないので判断が難しいです。ファイルに印刷(PDF)して見てみましょう。うまくいかない?もう一度やり直しましょう。時間はありますよ。 記事を読む