Filter
Clear
Tags by Type
Software
Altium Designerによる円形や曲線状のPCB設計 現代の生活は、電子機器なくして成立しません。まるで、家にあるもの全てをPCBに配線する最初の人間になる競争をしているかのようです。デバイスの形状やサイズがきわめて多岐にわたってきており、円形のPCBがいっそう普及しています。円形のPCBで次のデバイスを設計したいとお考えなら、四角形のPCBを前提とした作業に制約されないCAD/レイアウト ツールを備えた設計ソフトウェアが必要です。 Altium Designerで作業すれば、PCBのフットプリント/レイアウトを全面的に制御できるようなり、あらゆる形状、サイズのPCBを構築できます。 Altium Designer 曲線状や円形のPCBに対応する、優れたレイアウト ツールを備えたPCB設計ソフトウェア パッケージ PCBがかつてないフォームファクターに対応し、いっそう高度な機能を必要としているため、設計方法もこのような変化に着いていかなければなりません。次の電子機器が円形のフォームファクターなら、円形のPCBを使用することで基板スペースが広がり、四角形の基板をいくつも使用するよりも望ましいといえます。特定のアプリケーションに応じて、多くの他のデザインルールや方法を実行する必要もあるでしょう。優れたCAD/レイアウト ツールを備えたPCB設計ソフトウェア パッケージを使用することで、次の円形のPCB設計がスムーズに行えます。 円形や曲線状の設計方法 PCBの形状が決まったら、CADツールで基板の形状を描画する必要があります。これが基板の基礎を形成するもので、設計者は次にコンポーネントの配置に進むことができます。高性能デバイスの場合は、高速/高周波機能を備える多層PCBを設計することになります。各レイヤーにGND/電源プレーンを定義する必要もあります。電源/GNDレイヤーの形状の定義には、設計ソフトウェアに組み込まれたポリゴンエディターが必要です。 特定のアプリケーションに対応する円形のPCB設計 特定のアプリケーションでは曲線状や円形のデバイスが求められ、それによってPCBの設計もデバイス パッケージのフォームファクターに合わせる必要があります。四角形の基板を曲線状のパッケージ内部に使用すると、利用できる基板スペースが縮小します。そのため、曲線状の設計にすることでパッケージの輪郭に合ったPCBを実現できます。これによって、いっそう設計の柔軟性が得られ、将来、新しい機能を組み込むために設計を拡大することもできるようになります。 特定の基板形状は、各アプリケーションに応じて優れたCADツールを必要とします。優れた設計ソフトウェアは、曲線状や円形のPCBの作成を実現します。 特定のアプリケーションに応じた基板形状のカスタマイズの詳細については、こちらをご覧ください。 曲線状や円形のPCBで電源/GNDプレーンを定義するには、ポリゴンエディターを備えた設計ソフトウェアが必要です。これによって、GND/電源プレーンのカスタマイズが可能になり、円形のPCBに適応することができます。
アプリケーションのためのAIのカスタマイズ アプリケーションに合わせたAIのカスタマイズ AI技術は、デバイスが世界とどのように相互作用するかを急速に変えています。従来、プログラマーはシステムが現実世界のさまざまな予測不可能な状況にどのように反応するかを事前に決定する必要がありました。AIを使用すると、そのモデルは望ましい反応を捉えるように訓練され、予期しなかった状況に対しても信頼性の高い望ましい反応を提供できるようになります。 AIに新しい開発者が直面する課題の一つは、アプリケーションに合わせたAI実装をカスタマイズすることです。特定のアプリケーションが自身のボード実装を正当化するのに十分なボリュームを持っていない限り、市販のAIボードは一般的な効果に焦点を当てがちです。それらはすべてのアプリケーションに必要ではないリソースやインターフェースを持っているため、不必要にコストを増加させます。 例えば、 Jetson Nano Developer Kit のような開発者キットは、基本的なAI実装を作成する方法に慣れるのに最適な方法です。Jetson Nanoにはさまざまなインターフェースが付属しており、非常に短時間でテストシステムを立ち上げて動かすことが簡単です。このキットは、センサー処理からビデオ分析、音声処理に至るまで、幅広い多様なアプリケーションの優れた出発点として機能します。 しかし、一般的なAIシステムの構築方法を理解すると、最終的な製造ハードウェアに可能な限り近いプロトタイプを使用してアプリケーションの開発を開始したくなるでしょう。これは、AIをエッジに移行する際に特に重要です。 クラウド内のGPUのコスト、可用性、およびスケーラビリティは非常に柔軟です。必要な応答性を得られない場合や、モデルが当初考えていたよりも多くのデータを効果的に処理する必要があることがわかった場合、簡単にクラウドリソースを追加できます。 しかし、エッジではそうはいきません。エッジでは、コスト、パフォーマンス、および精度のバランスを取りたい場合に最適なリソースの組み合わせを決定する必要があります。理想的には、大幅なハードウェア変更を強いることなく簡単にダウンスケールできるシステムが必要です。 また、センサー、カメラ、インターフェース、メモリ、MCUなど、アプリケーションの残りの部分を構成するコンポーネントも設計の容易さに影響します。これは、ある時点でAIシステムをアプリケーションの残りの部分と統合する必要があるためです。 ビデオイメージのサイズを増やす必要があることがわかった場合に必要となるカスケード変更を考えてみてください。AIモデルは異なるサイズのイメージを扱う必要があり、システム全体のパフォーマンスとメモリ要件が完全に変わります。さらに、新しいカメラを既存のファームウェアとシームレスに統合する必要があり、できればファームウェアの書き換えを避けたいところです。この新しいリソースの組み合わせをバランス良く最適化するには時間もかかります。さらに、2台目のカメラを追加し、実効フレームレートを上げる必要があると想像してみてください。 この統合段階は、手動で行う必要がある場合、非常に時間がかかり、イライラすることがあります。たとえば、同じベンダーのカメラドライバーであっても互換性がないことがよくあります。新しいドライバーが前のものと全く同じように動作することを確認するために、広範なテストを行う必要があります。 Geppetto のようなカスタムプラットフォームアプローチをデザインに採用することで、開発時間を大幅に短縮できます。Geppettoを使用すると、実証済みの機能ブロックをドラッグアンドドロップでカスタムボードに追加できます。AIアプリケーションの場合、Jetson Nanoから始めて、必要ない機能を削除できます。その後、センサー、インターフェース、プロセッサー、その他の回路を広範なモジュールライブラリから追加し、アプリケーションに最適化されたカスタムモジュールを構築できます。 このアプローチの主な利点は、初期の開発とテストのために少数のボードをコスト効率よく製造できることです。もし、より多くの処理能力が必要になった場合、またはそれ以下である場合でも、完全に新しいシステムを設計することなく、簡単にデザインを調整できます。 さらに、カスタムボードはOSとドライバーが事前に統合されています。すべてのコンポーネントを連携させる必要はありません。なぜなら、私たちがすでにそれを行っているからです。
PCB設計のレビューとコラボレーション Altium 365におけるPCB設計のレビューとコラボレーション 最近ではリモート協力ツールが至る所にあり、設計者は電子設計のための便利な協力システムにアクセスできるようになりました。設計チームの一員であるか、製造業者から推奨された設計変更を迅速に実行する必要があるかどうかにかかわらず、PCB設計アプリケーション内ですぐにアクセスできるクラウド協力ツールが必要です。 今ではAltium 365を使用することで、Altium Designer内でアクセス可能なクラウド駆動の設計インターフェースを利用できます。このプロセスは難しそうに聞こえるかもしれませんが、Altium 365のワークスペースにアクセスするだけで全てが可能になります。新しいPCB設計プロジェクトにおいて、どのように迅速に協力を開始できるか、そしてチームが手動でファイルを各チームメンバーに送信することなく設計に変更を容易に加えることができる方法についてここで説明します。 PCB設計協力プロセスの開始 このチュートリアルでは、Altium 365のウェブインターフェースを通じて設計を見ているデザイナーと、Altium Designerで設計に取り組んでいる別のデザイナーの2つの役割を想定します。Altium 365のワークスペース内から、私の設計のための新しいプロジェクトを作成し、共同作業者にアクセス可能にすることができます。また、Altium Designer内で新しいプロジェクトを作成し、すぐにワークスペースに保存して、共同作業者がアクセスできるようにすることもできます。 Altium 365のウェブインスタンスにログインしていることを確認してください。その際、Altium Designerのユーザー認証情報を使用します。 クラウドを通じてこれを行う利点は、共同作業者がプロジェクトファイルを送り合うことなく、Altium Designer内でプロジェクトに即座にアクセスできることです。彼らはAltium Designer内のOpen Project機能を使用するだけで、あなたのワークスペース内のプロジェクトにアクセスできます。 共同作業者が見ることができるプロジェクトとファイルを制御できます、そして手動で変更を追跡することについて心配する必要はありません。もしプロジェクトの以前のバージョンに戻す必要がある場合や、現在の状態でプロジェクトのクローンをすぐに作成する必要がある場合でも、すべてのプロジェクトデータはAltium 365に組み込まれた安全なバージョン管理システムにあります。
PCBのグリッドシステムとPolarグリッドの活用 PCBのグリッドシステムとPolarグリッドの活用 基板設計CADは汎用のグラフィックツールとは異なり、グリッドベースの編集システムが用いられています。 これは、クリアランスを保ちつつ能率良く編集を行う為に不可欠なものであり、編集作業はまず、このグリッドを設定する事から始まります。 CADが使われ始めた頃、PCBに実装される部品の主役はDIP-IC(Dual In Line Package)でした。このDIP-ICの端子間隔は100mil(2.54mm)であり、その端子間に何本のトラックを通すかでグリッドの設定値が一義的に決まり、指定された位置に部品を配置する場合以外には、切り替える必要は殆どありませんでした。 しかし、現在では高密度化や端子の多様化が進み、複雑なグリッドのマネジメントが必要になってきています。またスイッチの接点にもプリント基板が使われ、同心円上にオニジェクトを配置しなくてはならないケースも増えてきています。 Altium Designerはこの進化した現在のニーズを満たす、高度なグリッドシステムを備えています。 基本グリッドとローカルグリッド Altium Designerでは基板全域に一律にグリッドを設定するだけでなく、任意のエリアに仕様の異なるローカルグリッドを配置する事ができます。そして、ローカルグリッドは、通常の直角に交差する格子状(Cartesian)のものだけでなく、同心円状の極座標(Polar)グリッドを用いる事ができます。 ローカルグリッドは、基板回路などの実装密度が異なる回路が基板内に混在する場合や、ロータリースイッチの周囲に同心円状に部品を配置したい場合などに役立ちます。また極座標グリッドではただ単にカーソルをスナップするだけでなく、放射状に延びる座標軸の角度に合わせて部品を自動的に回転させる機能を備えています。 このローカルリッドの追加と設定は、[Properties]パネルの[Grid Manager]で行う事ができます。 極座標グリッドを使う 極座標グリッドはフットプリントエディタでも利用できます。そこで、極座標グリッドを使って、ロータリーエンコーダーのフットプリントを成ってみましたので、その手順を紹介します。 1. 極座標グリッドを配置 [Properties]パネルを表示し[Grid
部品配置を能率よく行う為のヒント 部品配置を能率よく行う為のヒント プリント基板設計では基板外形を設定した後、ワークスペースに部品(フットプリント)を呼び出します。そして、その部品を適正な位置に再配置し、それが終われば配線を行います。 この作業の最初の工程である部品配置は、その後の配線作業を円滑に行う為に大変重要な作業です。もし、配線作業中にスペースが足りなくなった場合には、部品を動かさなくてはならず、出来上がっている配線パターンを剥がしてやり直さなくてはならなくなってしまいます。 部品配置では多くの部品の位置決めをしなくてはならない事に加え、高い完成度が求められます。そこで今回は、この手間のかかる部品配置を能率よく行う為の方法や役立つ機能を紹介します。 回路図のレイアウトを最適化 - 基板の部品配置を回路図に反映させる 基板上に部品を配置する際には、ラッツネストを頼りに配線が最短になる位置を探しますが、電源やBUSなどの長いネットを持つ部品はラッツネストだけでは判断できず、回路図を参照しなくてはなりません。このため、回路図を描く際に、基板上で互いに近付けたい部品は回路図上でも近くに置いておくと良いでしょう。バイパスコンデンサは、まとめて一か所に描くと回路図はスッキリしますが、クリチカルな箇所については対象となる電源ピンの近くに描いておきましょう。 また、信号の劣化やノイズに注意しなくてはならないRF等のアナログ回路の場合には、回路図からレイアウト上の要件を読み取ります。このような場合、回路図シンボルをフットプリントと同じピン配列で作成しておくと、基板レイアウトとの相関性が高まりより分かりやすくなります。これはアナログ最盛期によく使われた、実体配線図の考え方に似ています。 また、回路図は、1枚のシートに異なった機能ブロックを混在させず、機能ブロックごとにシートを分割すべきです。同じ回路を繰り返し使用する場合にも、単純な Copy and Paste ではなく、シートシンボルやデバイスシート、マルチチャンネルデザインを使って回路を複数化します。これにより、ルーム機能を有効に活用できるようになります。 ルームを活用する Update PCB Document...でPCBにデータを転送すると、フットプリントが呼び出され端子間の接続を示すラッツネストが表示されます。そして、そのバックには四角い箱が表示されます。この四角い箱がルームであり、回路図シートごとに部品がクループ化されています。このルームを使ってグループ移動ができますので、まず、このルームを使って大まかに配置を決めると良いでしょう。 さらに、このルーム機能は、オーディオミキサーのように回路の繰り返しが多く、基本的な配置が決められている場合には特に有用です 以下は、マルチチャンネルデザインが用いられたオーディオミキサーの例です。オーディオミキサーは、基板上に配置する部品の位置が、製品の仕様によってほぼ決まってしまいます。このため、ルームを使って規定されたエリアに部品を振り分ける事により、作業能率を飛躍的に向上させる事ができます。 ルームを利用するためのコマンド