Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
Home
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
Highlights
All Content
CoDesign and CoEngineering (ECAD/MCAD Collaboration)
Component Management and Libraries
Data Management and Version Control
Manufacturing Outputs and Compliance
PCB Design and Layout
Schematic Capture and Circuit Design
Simulation and Analysis
Supply Chain and Component Sourcing
System and Product-Level Design
Filter
Clear
Tags by Type
全て
ガイドブック
ニュースレター
OnTrack
ビデオ
ウェビナー
ホワイトペーパー
ソートリーダーシップ
Software
全て
Altium 365
Altium Designer
トレーニング
CircuitMaker
CircuitStudio
Concord Pro
Tasking
PDN Analyzer - 電流密度解析ツール (Legacy)
Non-Altium Products
Thought Leadership
多層PCB設計: 高電圧PCB向けの基板の製造
編集クレジット: Anton_Ivanov / Shutterstock.com オリジナル版の『 シュレック』は、私が大好きな映画の1つです。『 スター・ウォーズ』といったもう少し歴史のある作品と同じように、この映画に出てくる名言はマニアである友人や兄弟姉妹の間でお気に入りの言葉になっています。特に有名なのは、自分のような怪物は複雑な生き物だということをシュレックがドンキーに説明しているシーンでしょう。「玉ねぎにはいくつも層がある。怪物にもいくつも層がある。わかるかい?玉ねぎにも怪物にもたくさんの層があるんだ」ここでドンキーが指摘したのは、誰もが玉ねぎを好きだとは限らないものの、パフェを嫌いな人はいないということでした。人が層になっているものをどのくらい好むかという点で、私の友人はPCB設計のラボで、多層PCBがパフェと玉ねぎの中間にあると言いました。 その複雑性を踏まえると、私はよく多層PCBがパフェよりも玉ねぎに近いと感じます。多層PCBに苦手意識を持たないようにするのに役立つことの1つは、製造の方法やその工程で設計にどのような影響があるのかについて理解することです。高電圧設計の場合は、製造による影響について理解しておくことがさらに重要になります。 多層基板の製造方法とは PCB設計を製造業者に送った後は、最終的に完成基板にまとめて搭載されるそれぞれの層が個別に製造されます。銅箔トレースは撮像、エッチングされてからラミネート加工されます。これらの層は、非常に強力な液圧プレスで絶縁材を使って一緒に圧迫され、基板の最上層と最下層が加工されます。 中間層は、樹脂を浸透させたファイバーガラスである「 プリプレグ(prepreg)」(pre-impregnatedの短縮語)を使って製造されます。プリプレグに含まれる樹脂の割合は、液圧プレスによる基板の圧迫に影響を及ぼします。プリプレグの分量と粘性は用途に応じた最適なものにし、製造中に不具合が発生しないようにしなければなりません。これは、ケーキの最後の層のフロスティングとスポンジを用意することに似ています。 プリプレグに含まれる接着剤の割合が多過ぎると、圧迫時に層と層の間からはみ出してしまいます。おいしいフロスティングなら問題ないかもしれませんが、PCBの製造の場合はご想像どおり、厄介でまずいことになります。プリプレグが多過ぎて基板が厚くなると、電圧保護の計算がすべて台無しになってしまうのです。 PCB に含まれる樹脂はケーキのフロスティングのようなもの。分量を間違えると厄介なことになる。 樹脂について 一般的なPCBの場合、製造業者は低コストでボリュームのあるプリプレグ材を使用する確率が高くなりますが、こうした材料は樹脂の含有量が低く、ガラスが多く含まれます(ガラスは樹脂の浸透に影響を及ぼします)。高電圧の用途向けの場合は、 樹脂の割合が高いプリプレグを使って、層のプレス後に隙間が残らないようにしなければなりません。隙間によって絶縁層の効果的な誘電性が変化すると、やはり電圧保護の計画が台無しになってしまいます。 ここでの賢い方法は、1080や2113といった高電圧用のプリプレグを選択することです。こうしたプリプレグは、樹脂の含有量が高くて層が薄くなるため、隙間や微泡が残るのを防止してすべての層の密度を高くすることができます。層状になった食べ物で言うと、バクラヴァのようなフレーク状の層は、高電圧下での性能に 大きな影響を与えます。これらのプリプレグには含まれるガラスも少ないため、樹脂の浸透もよくなります。コストは上がるものの、その分だけ高電圧下での保護状態も向上します。
OnTrack Newsletters
OnTrack Newsletter 2017年7月
On Track Newsletter 2017年7月 第1巻第4号 Altiumの「On Track」ニュースレター7月号をお届けします。「ロックスターとスーパーヒーロー」では、引き続き、今日の電気技術者やPCB設計者に役立つ知識をいつも共有してくれるシグナルインテグリティー専門家リック・ハートリー(Rick Hartley)氏へのインタビュー第2部をお届けします。 「メーカースペース」では、ウィスコンシン大学のBadgerloopチームについての楽しい話をご紹介します。彼らは立場の弱い学部学生でありながら、スペースXの第2回 ハイパーループポッド コンテストからわずか数週間後には超高速な新型ポッドを発表しています。 また、今回のニュースレターでは、PCB設計の知識と技術を保つのに役立ついくつかの重要な「頭脳食」も含めてあります。 今後の業界イベントとしては、Altium主催の AltiumLive 2017: PCB Design Summitがこの10月に北米とヨーロッパで開催されます。ぜひ、予定に入れておいてください。他の設計者と共有する魅力的な情報があれば、 プレゼンテーションページでアイデアを提出してください。 では、「On
OnTrack Newsletters
OnTrack Newsletter 2017年6月
On Track Newsletter 2017年6月 第1巻第3号 PCB設計という銀河にジェダイの騎士がいたとすれば、Rick Hartley氏はシグナ ルインテグリティーのオビ=ワン・ケノービということになるでしょう。今月 のOn Trackでは、Hartley氏がこれまでのキャリアの中で実際に体験した失敗や 成功にまつわるエピソードをご紹介します。来月はこのインタビューの第2弾と して、Hartley氏の「ジェダイのマインドトリック」と現代のPCB設計者へのアドバイスをお届けします。 「メーカー」のセクションでは、New Jersey Institute of Technology(NJIT)の SAEバハレーシングチームが一から製作したレーシングカーが、勝利を手にし た様子をご紹介します。 さらに、On
Newsletters OnTrack
OnTrack Newsletter 2017年5月
On Track Newsletter 2017年5月 第1巻第2号 AltiumのニュースレターOn Track第2号へようこそ。今月は、極めて優秀なPCB 設計者であり、またCIDおよびCID+のマスタートレーナーであるCherie Litson 氏をご紹介します。また、FIRST Robotics CompetitionとTeam Mechanical Mayhem 1519についてもご紹介します。さらに今月から新たに、On Trackトレ ーニングビデオシリーズの提供も開始します。毎月、設計に関するヒントをご紹介します。いつものように、頭脳食と電子機器関連のカンファレンスおよびイベントの情報が盛りだくさんです。 ご意見やご提案がありましたらいつでもお知らせください。Altiumのニュースレ ターをどうぞお楽しみください! Judy
Thought Leadership
製品のサービスが行いやすくなるよう設計を最適化する方法
十分に準備を整えたつもりで何かに立ち向かったところ、何をすべきか全くわからないという感情を味わったという経験はあるでしょうか? 残念なことに、私は思い出したくないほど数多くこのような経験をしています。特に、サービスを行いやすくなるように製品を設計する、または修理を考えて設計を開始したときに、頻繁にこのような経験をしました。 サービスを行いやすくなるように製品を設計すべきか どうかを決定する前に、考慮すべき多くの要因が存在し、その現実性について十分な時間をかけて考慮する必要があります。最終的に、修理を考えて設計を行うことを決定した場合、製品のサービスとトラブルシューティングが簡単になるような機能を含める必要があります。私は初期の設計ミスから、サービスを行いやすくなるよう設計を最適化する方法を学びました。いくつかの役に立つヒントをここで紹介しましょう。 1. 視覚的なインジケーターを追加する オンサイトで電子機器のサービスを行うのは、サポートチームの手に余ることがあります。特に、誤動作が重要な動作の遅延を引き起こしている場合にはその傾向が強くなります。いくつかの視覚的なインジケーター、例えばLEDやLCDを的確に配置すると、サポートチームが問題を迅速に特定するのに役立ちます。LEDを使用して、基板に電力が供給されていること、マイクロコントローラが動作していること、基板がデータを正しく送受信していることなどを表示できます。 2. PCBにラベル付けする 技術サポートチームに最新の回路図を渡しておいたとしても、基板上のコンポーネントに正しくラベル付けしておかなければ、正しい部品を探すために多くの時間を費やすことになります。コンポーネントへモジュールに応じて割り当てを行うシステムを使用し、正しいコンポーネントのとなりに シルクスクリーンラベル が配置されていることを確認します。また、基板接続へのワイヤのデジグネータの横に、意味のあるラベルを追加します。「PC」などのラベルを使用すると、そのコネクタがPCに接続されていることを技術者が容易に認識できます。さらに、受信ワイヤ接続で極性が重要な場合、「+」や「-」などの極性サインを追加することも適切です。 3. エラーのログ出力機能の実装 複雑な組み込みシステムを設計するとき、エラーのログ出力を無視することはできません。ほとんどの場合、ラボでのテストで見逃された 問題やバグ は、現場で追跡するのが困難です。これらの問題は多くの場合、変数の組み合わせによってトリガされ、簡単に再現できません。さらに悪いことに、サポートチームが問題に取り組もうとしたときには、システムは既にリセットされている可能性があります。最低でも、EEPROM(Electrically Erasable Programmable Read-Only
Thought Leadership
組み込み型ソーラーシステム向けのPCB設計ガイドライン
旅行から戻って来た直後に、もう一度旅行に出掛けたいと思ったことはありませんか? 私にはそんな経験があります。前回のビーチリゾートでの休暇が、雷雨が続いたせいで台無しになってしまったのです。旅行の計画を立てるときは、予測できない天気というものがいつもジレンマになります。アウトドアで過ごす予定があればなおのことでしょう。 屋外での使用が想定される組み込み型のソーラーシステムを設計する際、私はこれと同じ慎重な姿勢で取り組みようにしています。こうしたシステムは、安定した電力供給で稼働する組み込み型のシステムとは完全に異なる難題です。例によって、私は苦労の末に慎重になることを学びました。というのも、最初に手掛けたソーラー式の試作は、1日でも雨が降ると稼働しなくなってしまったからです。 組み込み型ソーラーシステムについては考慮すべき状況がたくさんあり、太陽光のない状態で何日も稼働するように計画しなければなりません。 組み込み型ソーラーシステムの設計で考慮すべき要素 1. ソーラーパネル 言うまでもなく、ソーラーシステムで最も重要なの要素はソーラーパネルです。これについては、多結晶や薄膜よりも効率がよく、暑い気候でも優れた性能を発揮する単結晶を選択したほうがよいでしょう。パネルの中には最大22%の 太陽光を電力に 変換できるものもあります。とはいえ、単結晶や多結晶の効率はサプライヤーによって異なるため、事前に詳細情報を確認しておきましょう。 2. 電池の容量 組み込み型のソーラーシステムで重要なパラメーターは、ソーラーパネルの性能が0%になった場合のシステムの持続性です。環境要因によっては、ソーラーパネルに数日や数週間、太陽光が届かない場合もあります。そこで必要になるのは十分な容量のある 電池 です。また、ソーラーパネルの充電率が電池の使用率を上回るようにしておく必要もあります。5時間かけて充電した電池が2時間で消耗してしまっては、とても効率的とは言えません。 3. 太陽光の照射 考え方によっては、ソーラー技術はいたって単純です。太陽光がなければ電力は生成されません。ただし必ずしも、8時間分の太陽光で8時間分の電力が生成されるわけではありません。「 太陽光ピーク時間 」という用語がありますが、これは太陽が空の最も高い位置にあって、ソーラーパネルが一番効率的になる時間帯を指します。こうした要素について認識し、太陽光ピーク時間を算出しておくことが望まれます。
Pagination
First page
« First
Previous page
‹‹
ページ
244
現在のページ
245
ページ
246
ページ
247
ページ
248
ページ
249
Next page
››
Last page
Last »
他のコンテンツを表示する