Altium Designer - 回路・基板設計ソフトウェア

簡単、効果的、最新: Altium Designerは、世界中の設計者に支持されている回路・基板設計ソフトウェアです。 Altium DesignerがどのようにPCB設計業界に革命をもたらし、設計者がアイデアから実際の製品を作り上げているか、リソースで詳細をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
Gerberファイルで見つけることができる、よくあるPCB設計の3つの間違い Gerberファイルで見つけることができる、よくあるPCB設計のミス3選 1 min Thought Leadership 一般的なPCB設計のミスを見つけることで、製造までのプロセスを早めることができます 私は大学院に入るまで優秀な学生ではありませんでした。その時点で、私は人生の他のどの分野よりも宿題に力を入れ始めました。確かに、私の社交生活はなくなりましたが、すぐに模範的な学生になり、振り返ることはありませんでした。 学校にいる間に宿題をする必要があるように、新しい設計を製造業者に送る前に宿題をするべきです。新しい設計ではいくつかの一般的なエラーが発生する可能性がありますが、製造に出す前にレイアウトとガーバーファイルを入念にチェックすることで、これらの問題を避けることができます。これらの点をチェックすることで、製造業者からの入札拒否の反応を避け、組み立て後の歩留まりを向上させることができます。 製造前の一般的なPCB設計ミス 請求書に値する製造業者は、製造と組み立ての実行を開始する前にいくつかの重要な点をチェックする時間を取ります: コンポーネントの入手可能性、コスト、および 廃止 回路図、レイアウト、ガーバーファイル、部品表、およびエクセロンファイル間の一致 製造プロセスへの適合 最初のポイントは、 サプライチェーンを調査して、予算内で部品を調達できることを確認することを要求します。廃止予定の部品をチェックすることで、製品が最も長く関連性を持つ寿命を持つことを保証します。この宿題を自分で行い、回路図とレイアウトを作成する前に行うことで、再設計のリスクを減らし、全体の生産時間を短縮します。 二番目のポイントは、設計文書間の直接比較に関わります。Gerberファイルとドリルファイルの両方にすべてのドリル穴が表示されていることを確認したいです。また、回路図/レイアウトのすべての部品が部品表に表示されていることも確認するべきです。一部のCADプログラムは、ボードの各レイヤーごとに個別のファイルを作成しますが、設計者はボードの製造に必要なすべてのファイルが準備され、正確であることを確認する責任があります。 第三のポイントは、実際には第二のポイントに関連しています。 ガーバーファイルとエクセロンファイルをメーカーが検査するのは、設計が彼らのプロセスでフルスケールで生産できるかを確認するためです。レイアウトやガーバーファイルで素晴らしく見える機能も、完成品では想像した通りに(そもそも見えない場合もあります)現れないかもしれません。設計者として、メーカーやメーカーの代表者に彼らの能力と要件について相談するべきです。 ガーバーファイルとレイアウトを慎重に検査することで見つけることができる一般的なPCB設計のミスはこちらです。 重なっているまたは配置が間違っているドリルヒット スロットを作成しようとして2つのドリル穴を重ねるのは災害のもとです。ドリル中にビットが折れる可能性が非常に高いです。代わりに、エクセロンドリルテーブルのコードを使用して、この特定の機能をスロットとして定義できます。同様に、ビア用の誤ったドリルスポットが表面または内層のトレースやパッドに当たると、銅の特徴を破壊します。 これらの両方の間違いは、DFMチェック中にPCBレイアウトのすべてのレイヤーをオンにすることで見つけることができます。比較的シンプルな設計の場合、製造業者は機能に影響を与えることがないため、ビアを簡単に移動させることができます。より複雑な設計では、製造業者は(またはそうあるべきですが)多くの複雑な変更が必要になる可能性があるため、ドリルホールやビアを移動させることをためらうでしょう。設計は変更のためにあなたに戻され、ボードが生産に送られる前に。 このPCBレイアウトでリターン電流の経路をどのように決定しますか? パッド周りのはんだマスククリアランス 記事を読む
Lidar用パルスレーザーダイオードドライバー回路レイアウト Lidar用パルスレーザーダイオードドライバー回路レイアウト 1 min Blog 自動運転車のセンサースイートの一部として、ライダーの範囲マップは、車載レーダーや他のセンサーやイメージングシステムと並んで、周囲の環境での物体識別に重要な役割を果たします。小型フォームファクターとスリークなパッケージングを備えた機能的なドライバーサーキットを構築することは、自動運転車の周囲でライダーイメージング/測距を可能にするために重要です。 これらの同じ回路は、大気モニタリング、汚染プルーム追跡、航空機の乱気流測定、その他の精密測定など、他のライダー応用にも適応できます。特定のライダーシステムの有用性を決定する主要な要因は、出力パワー、パルス時間、および繰り返し率です。適切なドライバーサーキットを設計するか、またはダイオードを適切に駆動ICに適応させることができれば、ライダーシステムが高解像度および範囲で動作することを保証できます。 パルスレーザーダイオードの駆動 - 送信側 パルスレーザーダイオードは、100 nsまたはそれ以下のパルス幅に達するために、高電圧、低デューティサイクルのPWMパルス(通常は数百kHzで約1%のデューティサイクル)で駆動されます。立ち上がり時間が短いパルスレーザーダイオードを駆動することで、より高解像度の画像を得られ、より高速なスキャンレートが可能になります。ドライバICやカスタム回路で必要とされる短い立ち上がり時間は、長いパルスにはGaAsデバイスの使用を、短いパルスにはGaNが最適な選択です。 自分自身のドライバ回路を設計する場合、重要なコンポーネントはFETドライバと送信アンプステージです。パルスレーザーダイオードを駆動する信号は、最初にFETドライバで増幅され、その後、高電流FETトランスインピーダンスアンプリファイアを高いゲインでスイッチオンして、必要な駆動電流を供給します。この回路のブロック図を以下に示します。 パルスレーザーダイオードドライバ回路のブロック図 この回路は、電流モードのパルスドライバ回路として設計されています。電流制御デバイス(LEDやレーザーダイオードなど)は、定格順方向電圧を超えると低インピーダンスになることを覚えておいてください。ドライバ回路は、低インピーダンス負荷に対して全ての電力を落とす必要がある電流源として機能します。これは基本的にパルス電力増幅器であるため、レーザーダイオードを横切る電圧がコンプライアンス電圧を超えないようにする必要があります。 パルスレーザーダイオードをどのように駆動するかにかかわらず、出力のジッターが非常に低いことを確認する必要があります。これは、光速で移動する信号を扱う場合、1 nsのジッターが30 cmの距離誤差に相当するため、非常に重要です。正確な距離測定を保証するために、そのジッターを約10分の1に減らす必要があります。ジッターの削減は通常、電力、インピーダンス、及び寄生要素の3つの領域に焦点を当てます。 低インダクタンス電力経路 以下に示すのは、単一のMOSFETスイッチング要素を用いた容量性パルス電流駆動の簡略化された例です。このトポロジーでは、FETはロジックレベルでスイッチングできるように選ばれるべきですが、望ましいパルスの歪みを防ぐために可能な限り寄生要素が最小限であるべきです。必要なパルス立ち上がり時間と形状で安定した電力供給を実現するには、レーザーダイオード(以下「LD」と記されている)に至るまでのPDN/信号チェーン全体で低インピーダンスを維持することが重要です。 このトポロジーは非常に基本的に見えるかもしれませんが、コンポーネントの選択とレイアウトが主な課題です。すべてのコンポーネントは慎重に選ばれる必要があり、コンポーネントとレイアウトの寄生要素が組み合わさってパルス形状を決定し、リンギングや過剰なノイズのような問題を引き起こす可能性があります。これには、すべてのコンポーネントリード、PCBのトレース、プレーン上のインダクタンスが含まれます。より一般的なのは、FETをアンプに置き換えることです。アンプの フィードバックループにインダクタンスが最小限であることを確認してリンギングを防ぐ必要があります。そうでない場合、レーザーダイオードからの光出力にこれが重畳される可能性があります。 インピーダンスマッチングは必要ですか? この質問は、ジッターとレーザーダイオードの振る舞いに関連しており、非線形負荷コンポーネントとしてのそれについてです。非線形信号チェーンに精通している場合、パワーアンプ(飽和近くで動作)と非線形負荷の間の最大電力伝達は、わずかなインピーダンスの不一致がある場合に通常発生します。インピーダンスの不一致の正確な量は、ロードプル分析と呼ばれる技術を使用して決定されます。 レーザーダイオードと直列に、完璧なインピーダンスマッチングの量を得るためには、インピーダンスマッチング回路をレイアウトする必要があります。残念ながら、これにより新たな寄生インダクタンスが追加され、アンプ回路内で減衰不足の振動の可能性が生じます。その代わりに、入力インピーダンスを異なる値に変換しようとするのではなく、適切にPDNを設計し、必要な低出力インピーダンスを提供するアンプ/FETを選択することで、低インピーダンスの電流供給にのみ注意を払います。 記事を読む
PDNインピーダンス解析、およびモデリング:回路図からレイアウトまで 1 min Blog シグナルインテグリティーはよく話題になりますが、シグナルインテグリティーはパワーインテグリティーと密接に関連しています。これは、電源/電圧レギュレーターからのスイッチングノイズまたはリップルを減らすだけではありません。PCB内のPDNのインピーダンスにより、基板のコンポーネントが電源の問題が原因で設計どおりに機能しなくなる設計上の問題が明らかになります。 ここでは、PDNインピーダンス解析の基本モデルについて理解していきます。PDNインピーダンスのある程度、正確なモデルを構築できれば、コンポーネントに適したデカップリング ネットワークを設計し、PDNのインピーダンスを許容範囲内に保持できます。 PDNインピーダンス解析を行う理由 この記事をご覧の高速、および高周波設計者の方は、この質問に対する答えを既にご存じだと思います。しかし、技術的な需要の高まりに合わせ、全ての設計者が予想より早く高速および高周波設計者になることが考えられるため、PDNインピーダンスがPCBの信号の動作に与える影響を理解しておくことが重要です。残念なことに、この情報は必ずしも1つの場所に適切にまとめているわけではないため、ここで詳しく説明したいと思います。 簡単にまとめると、PDNインピーダンスは回路の次の側面に影響します。 電源バスノイズ。PCBの過渡電流が原因で生じる電圧リップル。PDNインピーダンスは周波数の関数であるため、スイッチングによって生じる電圧リップルも周波数の関数になることに注意してください。これらの過渡電流は、電圧レギュレーターからの出力のノイズレベルに関係なく発生する可能性があります。 電源バスノイズの減衰。場合によっては、電源バス上のリップルがリンギング(減衰不足過渡振動)として示されることがあります。これは、デカップリング コンデンサーのサイズが適切でない場合、またはデカップリング ネットワークでデカップリング コンデンサーの自己共振周波数が考慮されていない場合に発生する可能性がある1つの問題です。 必要なレベルのデカップリング。従来、コンデンサーは自己共振周波数が相対的に低い(100MHz以下)ために、TTLと高速のロジックファミリーを使用するPCBでデカップリングを確保するには不十分でした。そのため、設計者はデカップリングを確保するのに十分な静電容量を提供するために、プレーン間静電容量を使用していました。自己共振周波数がGHzの新しいコンデンサーを利用すれば、高速/高周波PCBでデカップリングを十分提供することができます。 電流リターンパス。リターン電流は最小抵抗(DC電流の場合)または最小リアクタンス(AC電流の場合)の経路をたどります。グラウンド ネットワークのインピーダンスはスペースによって異なり、信号トレースとPDN間の寄生結合に一部、依存します。 IRドロップ。電源およびリターン電流のDC部分では、PDNを構成する導体の固有抵抗により一定の損失が生じます。以下の画像はPDN解析結果の例で、特定の信号トレースの下を通るリターン電流と、同じGNDプレーンのDC電流を示しています。 タイミングジッター。信号の伝播時間は有限であるため、デカップリング コンデンサー、およびレギュレーターから引き出される電流がスイッチング コンポーネントに到達するまで時間がかかります。これらの信号がコンポーネントに到達すると、出力信号に干渉し、信号の立ち上がり時間にジッターを発生させる可能性があります。一般的に、パワーレールのノイズによるタイミングジッターは、ノイズの強度、およびレギュレーターとコンポーネント間の長さに応じて増加します。長いパワーレールでは、タイミングジッターが数ナノ秒で数百に達して、データの同期がとれなくなり、ビットエラー率が増加する可能性があります。 このPDNアナライザー出力の信号トレースに注目 PDNインピーダンス解析の簡略モデル 記事を読む
高速信号の長さ合わせ:トロンボーン、アコーディオン、およびノコギリ波チューニング 高速信号のための長さマッチング:トロンボーン、アコーディオン、およびノコギリ波チューニング 1 min Thought Leadership 昔々、高速信号の長さ合わせガイドラインは、異なるトレース長調整スキームを手動で適用しながら生産的に作業できるほどのスキルを持った設計者を必要としていました。今日の最先端のインタラクティブルーティング機能を備えた現代のPCB設計ツールでは、設計者はもはやPCBレイアウトで長さ調整構造を手動で描き出す必要はありません。設計者が残された選択肢は、どの長さ合わせスキームを使用するかを決定することです:トロンボーン、アコーディオン、またはノコギリ波ルーティング。 では、これらの異なるオプションの中で、あなたの高速設計に最適なのはどれでしょうか?十分に幅の広いトレース(つまり、HDI領域ではない)とGHz近くの帯域制限された信号を使用する場合、mmWaveやサブmmWave領域でアナログ信号を扱う際に見られる複雑な共振問題について心配する必要はありません。しかし、高速PCB設計における長さ合わせを行う際には、伝送線と信号完全性の振る舞いに関していくつかの重要な点を考慮する必要があります。 高速信号のための長さ合わせオプション パラレルバスで複数の信号間の長さ調整が必要である場合や、単に差動ペアの両端を長さ合わせする必要がある場合でも、何らかの方法で長さ調整を行う必要があります。低速では、これらの信号の立ち上がり時間が長いため、異なる長さマッチングスタイル間の違いは表面的です。これらの違いは、エッジレートが速くなるとより明確になり、長さ調整構造に入力するインピーダンスが目立ち始め、高周波でのさまざまな構造におけるモード変換の異なるレベルを生み出し始めます。 長さ調整オプションを選択する際には、2つの重要な点を考慮する必要があります: バスは単端か、それとも並列か? バスのインピーダンスは制御されていますか? どれくらいの不一致が許容されますか? 長さ調整構造は常に3つの問題を引き起こします:入力 奇モードインピーダンスの不一致、NEXT、および 差動ペアのモード変換。以下に、高速PCBレイアウトで見られる3つの一般的な長さ調整オプションを紹介します。 ソートゥース調整 長さ調整の最も一般的な例は、ギザギザ調整とも呼ばれることがある鋸歯状調整です。ここに含まれるガイドラインは、この長さ調整構造の元々の意図を反映しており、それはモード変換を制限し、拡張セクション間のクロストークの出現を抑えることです。 下の鋸歯状調整の例では、トレースに沿って滑らかな曲がりがありません。トレースは、下に示されているように、正確に間隔を空けるべきです。まず、「S-2S」ルールが下で使用されています。これは元々、長さ調整されたトレースの長さに沿って 45度の曲がりが使用されることを保証するために意図されていました。「3W」ルール(同名のクロストーク防止ルールと混同しないでください!)は実際には上限であり、鋸歯状の拡張部分の長さはWから3Wの範囲であることができますが、このルールに関してはガイドラインによって異なる場合があります。これらの寸法は、トレースの長さに沿った任意のインピーダンス不連続を最小限に抑えるために使用されます。 高速信号のための鋸歯状長さマッチング:「3W」ルール。 アコーディオン調整 アコーディオンチューニングは、しばしば蛇行長チューニングとも呼ばれます。上で示された斜めの延長を使用するのではなく、直線トレースに沿って追加のチューニング長さをより小さな距離に収めるために直交延長が使用されます。 以下に示すレイアウトは、異なる距離の複数のトレース延長を使用しています。この方法は、多くの単一終端信号の並列バスを含むアプリケーションでよく見られます。典型的な例はDDRです。これらの信号は時間内での同期が必要ですが、これらのトレースは差動バスの一部ではないため、トレースのペア間で厳密な位相要件はありません。したがって、長さチューニングセクションをどこに配置しても、受信コンポーネントは差動モードノイズと共通モードノイズを区別しないため、問題ありません。これが、DDRインターフェースの典型的なルーティングが以下のようなルーティングになる理由です。 高速信号のためのアコーディオン長さマッチング。 記事を読む
高速PCB設計においては、グラウンドプレーンのギャップを横切ってはいけません 高速PCB設計においては、グラウンドプレーンのギャップを横切ってはいけません 1 min Blog PCB設計者 PCB設計者 PCB設計者 電子機器やPCBのフォーラムをよく閲覧していますが、同じ質問が何度も何度もされています。なぜグラウンドプレーンの割れ目を越えてトレースを引いてはいけないのか?この質問は、ハイスピードPCB設計にちょうど足を踏み入れたばかりのプロのデザイナーからメーカーまで、誰もが尋ねます。プロの信号完全性エンジニアにとって、答えは明らかでしょう。 長年のPCBレイアウトエンジニアであろうと、たまにデザインする人であろうと、この質問への答えを理解することは役立ちます。答えは常に絶対的な表現で枠付けられます。PCB設計の質問に絶対的な用語で答えることはあまり好きではありませんが、この場合は答えが明確です:グラウンドプレーンの隙間を越えて信号をルーティングしてはいけません。さらに詳しく掘り下げて、なぜグラウンドプレーンの隙間を越えてトレースを引いてはいけないのか理解しましょう。 グラウンドプレーンの隙間:低速および高速設計 この質問に答えるには、DC、低速、高速での信号の振る舞いを考慮する必要があります。これは、各タイプの信号がこの基準面で異なるリターンパスを誘導するためです。信号がたどるリターンパスは、基板内で生成されるEMIに及ぼす重要な影響、および特定の回路がEMIに対してどれほど感受性を持つかについて、いくつか重要な影響を及ぼします。PCB内でリターンパスがどのように形成されるかをよりよく理解するために、 この記事と、Francesco Podericoからの 役立つガイドをご覧ください。 PCB内でリターン電流がどのように形成されるかを理解すれば、それがEMIと信号の整合性にどのように影響するかを見るのは簡単です。ここで重要な理由です—そしてそれはグラウンドプレーンのギャップを越えるルーティングに関連しています。ボード内のリターン電流によって形成されるループは、2つの重要な振る舞いを決定します: EMIの感受性。回路内の供給電流とリターン電流によって作られるループは、ボードのEMIに対する感受性を決定します。大きな電流ループを持つ回路は、より大きな寄生インダクタンスを持ち、放射されるEMIに対してより感受性が高くなります。 スイッチング信号におけるリンギング。回路内の寄生インダクタンスは、信号がレベル間で切り替わる際の 過渡応答の減衰レベルを決定します。回路内の寄生キャパシタンスと併せて考えると、これら二つの量は過渡応答の自然周波数と減衰振動周波数を決定します。 DC、低速、高速信号を詳しく見てみましょう: DC電圧/電流 基板がDC電源で動作する場合、リターン電流は信号トレースの直下ではなく、供給リターンポイントに直線的に戻るため、リターンパスを実質的に制御することはできません。これは、大きな寄生インダクタンスのために基板がEMIに弱くなることを意味します。電源が切り替わらないため、過渡振動がないと思われがちですが、マイクロストリップトレースがグラウンドプレーンのギャップを越えてルーティングされている場合でも、EMIの感受性の問題は依然として存在します。DCループのインダクタンスをできるだけ低く保つべきであり、ループインダクタンスを減らすためには、グラウンドプレーンのギャップを越えるルーティングを避けるのが最善です。 低速信号 DC信号と同様に、リターンパスは回路のループインダクタンスを決定し、これが EMI感受性および過渡応答の減衰を決定します。ループインダクタンスが大きい場合、減衰率は低くなり、DC信号の場合と同様に、グラウンドプレーンのギャップを越えてルーティングするとループインダクタンスが増加し、信号の整合性、電力の整合性、およびEMIに影響を与えます。 残念ながら、低速信号はある種の遺物であり、TTL以上の速度のロジックを使用するすべてのボードは高速回路として振る舞います。低速信号(一般に数十nsの立ち上がり時間とそれより遅い)では、特定の回路のリンギング振幅は通常、低く抑えられていたため、気づかれないことが多かったです。したがって、信号がグラウンドプレーンのギャップを越えてルーティングされない限り、ループインダクタンスは通常、激しいリンギング、EMI感受性、および関連する電力整合性の問題を防ぐのに十分に低かったです(下記参照)。 高速信号 低速で動作するように設計された基板に高速信号を流すと、与えられた回路ループのインダクタンスに対して、リンギングの振幅が大きくなります。これは、基板内のループインダクタンスをできるだけ小さく保つ必要性を再び示しています。目標は、与えられた相互接続においてリンギングの振幅を減少させるために、できるだけ多くの減衰を提供することです。再び、グラウンドプレーンのギャップを越えてルーティングすることで、ループインダクタンスの増加を避けることができます。さらに、高速回路を運ぶ信号層の下にグラウンドプレーンを配置することで、相互接続全体を通じてループインダクタンスができるだけ低くなるようにする必要があります。 記事を読む
回路設計における過渡信号解析のためのツール 回路設計における過渡信号解析のためのツール 1 min Thought Leadership 適切なシミュレータを使用すれば、これらの回路で過渡信号解析を行うことができます。 私はまだ最初の微分方程式のクラスを覚えています。最初に議論されたトピックの一つが、多くの異なる物理システムで発生する減衰振動回路と過渡信号応答でした。PCB内のインターコネクトや電源レールでの過渡応答は、ビットエラー、タイミングジッター、および他の信号整合性の問題の原因となります。過渡信号解析を行うことで、完璧な回路を設計する道のりでどの設計ステップを踏むべきかを決定できます。 単純な回路での過渡信号解析は、手作業で調べて処理することができ、時間の関数として過渡応答をプロットすることができます。より複雑な回路は、手作業で分析するのが難しい場合があります。代わりに、シミュレータを使用して回路設計中に時間領域の過渡信号解析を行うことができます。適切な設計ソフトウェアを使用すれば、コーディングスキルも必要ありません。 回路設計における過渡現象の定義 正式には、過渡現象は、一連の結合された一次線形または非線形微分方程式(自律的であるか非自律的であるかにかかわらず)として記述できる回路で発生する可能性があります。過渡応答はいくつかの方法で決定できます。私の意見では、ポアンカレ・ベンディクソンの定理を使用して、任意の結合方程式セットに対して手作業で簡単に処理できるため、過渡応答のタイプと存在を簡単に判断できます。このような操作が得意でない場合でも心配はいりません。SPICEベースの回路シミュレーターを使用して、時間領域で過渡挙動を調べることができます。 フィードバックのない時間不変回路の過渡応答は、3つの領域のいずれかに分類されます: 過減衰:振動のない遅い減衰応答 臨界減衰:振動なしで可能な限り速い減衰応答 減衰振動:減衰し、振動する応答 これらの応答は、時間領域シミュレーションの出力で簡単に確認できます。SPICEシミュレーターを使用して、回路図から直接過渡信号分析を実行できます。 時間領域での過渡信号分析のためのツール 回路の挙動を調べ、過渡信号解析を探求する最も簡単な方法は、時間領域シミュレーションを使用することです。このタイプのシミュレーションは、ニュートン・ラフソン法または数値積分法を使用して、時間領域で回路のキルヒホッフの法則を解くことにより行われます。これは、シミュレートされる回路の形式に依存します。これらおよびその他の方法は、SPICEベースのシミュレータに統合されており、明示的に呼び出す必要はありません。過渡解析のもう一つの方法は、回路のラプラス変換を取り、回路の極と零点を特定することです。 回路シミュレーションの観点からは、回路図から直接過渡信号解析シミュレーションを実行できます。これには、回路の挙動の2つの側面を考慮する必要があります: 駆動信号。これは、過渡応答を引き起こす入力電圧/電流レベルの変化を定義します。これには、2つの信号レベル間の変化(例えば、スイッチングデジタル信号)、電流入力信号レベルのドロップまたはスパイク、または駆動信号の任意の変化が含まれる場合があります。正弦波信号や任意の周期波形で駆動することも考慮できます。また、信号が2つのレベル間で切り替わる際の 有限立ち上がり時間も考慮できます。 初期条件。これは、駆動信号が変動する瞬間または駆動波形がオンになった瞬間の回路の状態を定義します。これは、時刻 t = 0 で、回路が初めて定常状態(つまり、回路内に以前の過渡応答がなかった)にあったと仮定します。初期条件が指定されていない場合、t 記事を読む