Altium Designer - 回路・基板設計ソフトウェア

簡単、効果的、最新: Altium Designerは、世界中の設計者に支持されている回路・基板設計ソフトウェアです。 Altium DesignerがどのようにPCB設計業界に革命をもたらし、設計者がアイデアから実際の製品を作り上げているか、リソースで詳細をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
5つのテクノジー未来予測 — 激動の10年 5つのテクノジー未来予測 — 激動の10年 1 min OnTrack 2019年は革新に満ちた年になるでしょう。過去数年間は変動の激しい時代であり、この技術革新とそれがもたらす変動の傾向は2019年も続くと考えられます。 人工知能(AI)などの動向について心配している方もいますが、私はまだ楽観的に捉えています。私たちの文明が最も長期的にうまく発展する要素となるのは、定期的に抜本的な改革が行われることです。変動が頻繁に生じることで、人々は新しい行動を開始してより大きく、より優れたものを創造し、新しい可能性を切り拓きます。これは、人間は総じて前に突き進むという本質を持ち合わせている証拠だと思います。 この点を念頭に置いて、今後10年間に何が起きるかを予測してみましょう。 予測1: 人工知能(AI)がメインストリームとなる 多くの方は、この点について私と意見が異なると思います。しかし、私の見方は多くの方から聞く話とは多少異なるのです。人工知能(AI)、すなわち「機械」が人間を支配し、奴隷化するようなことが起こるとは私には思えません。私たちは機械を作り出し、それを非常に生産的な目的のために使いこなすようになるはずです。 Microsoftは2016年3月に、Twitter上でAIチャットボットを公開しました。これは当初、機械学習を使用して人々との対話能力を向上させ、より人間らしくなるよう設計されていました。しかし24時間もたたないうちに、このボットは人種差別的かつ女性差別的な権化となってしまいました。私たち人間は、人工のいわば「胎児」を取り上げ、人間の善の部分ではなく悪の部分を見せた結果、その成長をねじ曲げてしまったのです。完全に失敗です。 人間が奴隷になる可能性は依然としてありますが、AIによってではないでしょう。もし起きるとすれば、それは間違った人間の手で、まったく人間らしい形式でコントロールされるシステムによるものでしょう。私は、ほとんどの人間が本質的に善良であると信じています。しかし、テクノロジーを悪事のために使おうとする人間も存在することは確かです。コンピューターシステムはその悪意を拡大する可能性があり、そのような可能性に対して十分な注意を払い、監視すべきと考えます。 AIは今後10年の間にメインストリームになるでしょう。機械が知性を持つわけではありませんが、他の点では人間の能力と区別がつかないものとなり、多くの点で人間を超えるでしょう。ただし、私たちが責任をもってこのテクノロジーを管理し続ける限り、大きな恩恵が得られます。 予測2: 幹線道路はずっと安全になり、建設工事はほとんど行われなくなる 今後10年間の終わり頃に、幹線道路のカープール専用車線が自動運転車用の車線に変わり始めるでしょう。この車線では、高速道路で自動運転が行え、オートネットに接続する車両のみが走行を許可されるようになります。10年後には、事実上全ての商用車両が接続し、個人用車両も20%近くは接続するでしょう。 Autonetはインターネットの一部で、移動中の車両専用に設けられます。これは、車両に関係する全ての要素への集団的意識となるよう設計されています。Autonetでは、自分の周囲に対する認識だけでなく、ネットワーク接続された車両の全てのセンサーおよび処理能力が認識対象のデータセットとして統合され、ネット上の全ての車両その他からアクセス可能になります。 このAutonet接続により、これらの車線を走行する全車両は実質的に1つの存在として行動することになります。より高速な走行が可能になり、車両間隔が狭くなり、それでいて今日の車両よりはるかに安全なものとなるでしょう。この車両自動化により、高速道路を拡張する必要はなくなり、既存の高速道路の実質的な許容量を大幅に拡大できます。 予測3: 医療の概念が劇的に変化する 今日、健康ビジネスは大きな産業となっています。その大部分は定期的な健康診断を受け、食事を改善し、運動量を増やすことを推奨するもので、医療保険会社のコストを削減し、平均寿命を伸ばすことが目的となっています。今日の健康パラダイムに関する問題の一部は、私たちが過去30年間に経験してきた医療技術の進歩モデルに基づいて構築されていることです。現在、テクノロジーと医療の連携方法には抜本的な変革が起きています。これは、パーソナルコンピューター、インターネット、スマートフォンの導入が私たちの日常にもたらした変化と同様の大きなインパクトを及ぼすものです。 私の予測では、今後5年から10年の間に、自分の体細胞から培養した臓器の移植が実現します。3Dプリントされた分解可能な構造がスキャフォールド(足場)となります。患者の皮膚から取られた細胞が幹細胞に変換され、この足場の周囲で成長するようプログラムされ、腎臓、肝臓、その他の臓器になります。この臓器は、拒絶反応を抑制する薬剤を必要とせず、患者の身体に移植できます。 3Dプリントともに、細胞内のエンジニアリングも実現するでしょう。遺伝子操作されたウイルスが生まれ、多くのがんや他の難病への現実的な治療法となるでしょう。ウイルスのプログラミングにより、将来的には既知のほとんどの病気に対して迅速かつ効果的な治療が可能になります。 現在のところ、最新の治療のコストは天文学的に高く、今後10年を通してもほぼ対数的に増大し続けると考えられます。やがては保険会社がこのような治療への支払いを拒否するようになり、何億ドルもの純資産を持つごく一部の人々以外は手が届かなくなるでしょう。社会全体として、このような進歩を止めて後退させてしまうか、または医療の一部の要素をかつて1960年代に行われた月面着陸計画(費用があまりに巨額なため、政府のみが支払えるもの)のようにみなすか、選択を迫られるでしょう。 記事を読む
学生ロケットチームOronos Polytechnique、PCB設計で高い目標へとリフトオフ 学生ロケットチームOronos Polytechnique、PCB設計で高い目標へとリフトオフ 1 min OnTrack このインタビューでは、モントリオール理工科大学の学生であり、Oronosのアビオニクスチームでリーダーを務めるNathanael Beaudoin-Dion氏にお話を伺いました。毎年6月、Oronosは世界最大のロケット工学の大会である「スペースポートアメリカカップ」に参加しています。この大会は、ニューメキシコにある世界唯一の商業用宇宙港で開催されています。活気あるアビオニクスチームの動画やロケットの写真も、併せてご覧ください。 Judy Warner: モントリオール理工科大学と、ロケットチームが結成されたきっかけについて教えてください。 Nathanael Beaudoin-Dion: モントリオール理工科大学はカナダの工業大学で、電気工学から宇宙工学に至るまで12の課程があります。Oronos Polytechniqueは2010年に、大学時代に新たな頂点に達したいと考えた3人の若いロケット愛好家によって結成されました。ロケットに対するこの情熱が設計チーム結成の原動力となり、第8回インターナショナルロケット工学競技会(International Rocket Engineering Competition)への参加を決めました。 Warner: チームには何人の学生が所属していますか? またメンバーの皆さんは何年生ですか? Beaudoin-Dion: Oronos Polytechniqueには、新入生から修士課程の学生まで、60人が所属しています。強力な学生ネットワークを作るため、さまざまな世代のメンバーとも連絡を取り合っています。また、毎年アドバイスをくださる専門家の方々ともつながりがあります。 ロケット打ち上げの準備が整ったOronos Warner 記事を読む
制御が必要なルーティングインピーダンス 制御が必要なルーティングインピーダンス 1 min Blog 制御インピーダンスルーティングの設計アプローチは、高速PCB設計の重要な要素であり、PCBの意図した高速性能を確保するためには、効果的な方法とツールを採用する必要があります。したがって、PCB内のルートを慎重に設計しない限り、インピーダンスは制御されず、トレース全体を通じて点から点へとその値が変動します。そして、PCBのトレースが高周波数で単純な接続のように振る舞わないため、インピーダンスを制御することで、信号の完全性を保持し、電磁放射の可能性も減少させます。 制御インピーダンスを決定するものは何か? PCBのインピーダンスは、その抵抗、導電率、誘導性および容量性リアクタンスによって決定されます。しかし、これらの要因は、基板構造、導電性および誘電体材料の特性、導体の構造および寸法、および信号リターンプレーンからの分離、ならびに信号特性の機能です。 基本的なレベルでは、トレースインピーダンス値はPCB構造から決定され、これらの要因によって生成されます: 誘電体材料(コア/プレプレグ)の厚さ 材料(コア/プレプレグ、はんだマスクまたは空気)の誘電率 トレース幅と銅の重さ 高周波を見ると、インピーダンスは銅の粗さ( スキン効果の増加を決定する)や損失正接(誘電体の損失)によっても決まります。設計で最も滑らかな銅を使用しても、銅張り積層板やプリプレグに粗い表面を確保するために、PCB製造では粗面化処理が使用されます。どんな場合でも、銅の粗さは常に存在します! 典型的な構成 まず、典型的な構成を見てみましょう。トレース構成にはいくつかの広いクラスがあります: シングルエンド:デジタル信号やRF信号を単独で運ぶ孤立したトレース 差動トレース:等しく反対の極性で一緒に駆動される2つのトレース 非共面:トレースが配線されている同じ層に追加の銅がないトレース構成 共面:トレースと同じ層に接地された銅プールが含まれるトレース構成 多層PCBを検討する際、設計者はトレースの制御インピーダンスが平面(リファレンス)によって遮蔽されているため、トレースの両側の平面間の誘電体の厚さのみを考慮すべきであることを覚えておく必要があります。ここに最も一般的な構成の例をいくつか示します: Er = 材料の誘電率 H 記事を読む
プロのPCB設計サービスプロバイダー活用のメリット プロのPCB設計サービスプロバイダー活用のメリット 1 min OnTrack 企業や設計チームは、さまざまな理由から自社の製品開発をサポートするため、専門的なPCB設計サービスプロバイダーを探し求めています。この記事では、設計サービスプロバイダーと契約を行うとき、どのような変動、利点、懸念の可能性が存在するかについて、Freedom CADのCEOであるScott Miller氏に話をうかがいました。 Judy Warner: Scottさん、Freedom CADについて簡単にご説明ください。また、御社が提供するサービスやサポートしているアプリケーションの種類についても教えてください。 Scott Miller: Freedom CAD Servicesは、15年以上もの間、納期と予算を守りながら、お客様に最高のサービスと最高の品質を届けることを使命としてきました。私たちの提供するサービスには、PCB設計、電気的、機械的なエンジニアリングやシグナルインテグリティのエンジニアリング、PCBレイアウト、納期の短いプロトタイプのハードウェアプログラム管理などがあります。 ISO 9001:2015認証とITAR登録に支えられ、私たちのチームは、実質的にあらゆる用途において顧客の特定業界にサービスを提供する態勢が整っています。 Warner: 設計者や設計チームは、通常どのような問題により、設計サービスプロバイダーのサポートを探し求めることになりますか? Miller: お客様は通常、次の3つの理由のいずれかにより、サポートを求めます。 1) 自社内に設計能力がなく、外注して変動型のコストモデルを維持している場合。需要にかかわらず人材やハードウェアおよびソフトウェアの固定間接費がかかる自社設計に対し、外注はサポートが必要な場合のみ費用が発生します。 記事を読む
統合ツールがマルチボードPCBシステム設計を容易にする方法 統合ツールがマルチボードPCBシステム設計を容易にする方法 1 min Blog PCB設計者 電気技術者 システムエンジニア/アーキテクト PCB設計者 PCB設計者 電気技術者 電気技術者 システムエンジニア/アーキテクト システムエンジニア/アーキテクト コンピューターを分解したことがあるなら、システム全体が単一のPCBに収まるわけではないことを知っているでしょう。さまざまなアプリケーションで使用される最も複雑なデバイスはマルチボードシステムであり、これらのシステムを設計するには想像力、計画、そして適切な設計ソフトウェアが必要です。 リジッドフレックスPCBは、マルチ回路ボードシステムの別のタイプに過ぎず、ボードの各部分を設計する際の同じ設計コンセプトが、それらを接続するフレックスリボンにも適用されます。すべてのマルチボードシステムがリジッドフレックスシステムである必要はありませんが、設計ソフトウェア内でボード間の接続を設計する必要があります。統合設計環境で最高の設計ツールを使用すれば、どのタイプのマルチボードシステムも簡単に設計できます。 マルチボード設計における機能ブロック マルチボードPCB設計を最初に作成するときは、スキーマティックを構築する前に、システムの30,000フィートビューから始めるのが最善です。マルチボードシステムは、単一のシステムにさまざまな機能を組み込みます。システムのブロック図を作成すると、システム内の異なる機能がどのように機能ブロックに分けられるかがより簡単に見えます。 ブロック図で機能ブロックが分離されているように、マルチ回路基板システムでは異なる機能ブロックを異なる基板に分けることができます。コンピュータの動作を考えると、表示、メモリ、ネットワーク接続、その他必要に応じた機能用の異なるカードがあります。 機能ブロックに基づいて異なる基板に機能を分離することは、各基板の適切なレイヤー数を決定するのにも役立ちます。すべてを一つの基板に組み込む場合、システム全体で最大レイヤー数をデフォルトにする必要があります。代わりに、基板が分離されている場合、異なるブロックでレイヤー数を少なくすることができ、全体の製造コストを下げることができます。システム内の一部の基板では、高レイヤー数の多層基板に HDIデザインが必要になる場合がありますが、他の基板は単純な4層基板で十分に機能します。 パッケージ仕様は、マルチボードシステム設計における各基板のサイズと形状を制限します。パッケージが何らかの方法で曲がる必要がある場合は、複数の基板を接続するためにフレックスリボンを使用する必要があります。それ以外の場合は、銅線を使用した標準的なコネクタとケーブルでシステム内の基板を接続できます。 3D設計ツールは、優れたマルチボードシステムを構築するのに役立ちます 痛みの原因を知る PCB設計ソフトウェアがIC設計など他の領域ではなく、マルチボードPCB設計に実際に焦点を当てている場合、マルチ回路基板および リジッドフレックスシステムを設計するための専門ツールが含まれます。これには、単一のプロジェクト内でシステム内の各ボードの構造をカスタマイズできるスタックアップマネージャーが必要です。ほとんどの設計プログラムでは、複数の設計プロジェクト間で前後に切り替える必要があり、これにより重要なシミュレーション、分析、および検証機能が実質的に無用になります。 マルチボードシステムの設計をリジッドフレックスボードとして作成することにした場合、レイヤースタックアップマネージャーは、フレックスリボンをPCBの別のセクションとして、固体銅層またはクロスハッチ銅として、電力、グラウンド、および信号を簡単にリンクできるようにする必要があります。これはすべて、単一のプロジェクトおよび単一のプログラム内で行われる必要があります。これにより、設計機能が視覚化、分析、およびルールチェックツールと直接統合されることを保証します。 デザインの検証は、要求に応じて設計ルールに対するチェック以上のものです。複数の回路基板やリジッドフレックスシステムを扱う場合、潜在的な信号問題を診断するための統合シミュレーションと、フォームファクターを検証するための3Dビジュアライゼーション機能が必要です。他のPCB設計プラットフォームでは、これらの機能をアドオンとして購入する必要があり、これらのアドオンは単一のプログラムに直接統合されません。依然として設計モジュール間を移動する必要があり、これは生産性を低下させ、データエラーの大きなリスクを生み出します。 最高のマルチボード設計ツール マルチボードおよびリジッドフレックスシステムを扱うには、ボードが単一のシステムにどのように同期するかのアイデアを得ることができる3D設計およびビジュアライゼーションツールが必要です。機械設計チームと電気設計チームは、各エリアの設計プログラムが統合されていなかったために、互いに孤立していました。 MCADとECADの機能を単一のプログラムで統合するソフトウェアを使用すると、各領域の設計者が協力して、デバイス全体に最適なボードサイズ、配置、および機能性を決定でき、全体的な設計プロセスを合理化できます。 本格的なMCAD/ECADコラボレーションにより、PCBデザイナーは機械設計者やDFMエンジニアと協力して、3Dモデル内で基板を分析することができます。これにより、製造ラインを離れる前に衝突を防ぐことが容易になります。設計チーム間でファイルが受け渡される反復的な設計プロセスを使用する必要はありません。代わりに、製品の3Dモデルを.STEPファイルで組織全体で共有でき、設計プロセスに関わる全員が単一のプログラムで設計作業を行うことができます。 階層的な回路図で設計をサポートするPCB設計ソフトウェアを使用すると、マルチボード設計がはるかに簡単になります。デバイスを異なる機能ブロックに分割する際、各ブロックに独自の回路図を割り当て、ブロック図のように簡単に回路図をリンクさせることができます。それから、設計の各部分を異なるPCB上でキャプチャし、マルチボードシステム設計が実際に形になるのを見ることができます。 フレックスリボンを使用して基板間の接続を構築することにした場合、リジッド領域とフレックス領域を定義し、フレックスリボンがリジッドセクションの内部層にどのようにリンクするかを定義できるレイヤースタックアップマネージャーが必要です。CADツールは、2Dおよび3Dでボードの配置を簡単に視覚化できるようにする必要があり、ルーティングツールはフレックスリボンを介して相互接続を非常に簡単にルーティングできるようにする必要があります。 記事を読む