Altium Designer - 回路・基板設計ソフトウェア

簡単、効果的、最新: Altium Designerは、世界中の設計者に支持されている回路・基板設計ソフトウェアです。 Altium DesignerがどのようにPCB設計業界に革命をもたらし、設計者がアイデアから実際の製品を作り上げているか、リソースで詳細をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
プロのPCB設計サービスプロバイダー活用のメリット プロのPCB設計サービスプロバイダー活用のメリット 1 min OnTrack 企業や設計チームは、さまざまな理由から自社の製品開発をサポートするため、専門的なPCB設計サービスプロバイダーを探し求めています。この記事では、設計サービスプロバイダーと契約を行うとき、どのような変動、利点、懸念の可能性が存在するかについて、Freedom CADのCEOであるScott Miller氏に話をうかがいました。 Judy Warner: Scottさん、Freedom CADについて簡単にご説明ください。また、御社が提供するサービスやサポートしているアプリケーションの種類についても教えてください。 Scott Miller: Freedom CAD Servicesは、15年以上もの間、納期と予算を守りながら、お客様に最高のサービスと最高の品質を届けることを使命としてきました。私たちの提供するサービスには、PCB設計、電気的、機械的なエンジニアリングやシグナルインテグリティのエンジニアリング、PCBレイアウト、納期の短いプロトタイプのハードウェアプログラム管理などがあります。 ISO 9001:2015認証とITAR登録に支えられ、私たちのチームは、実質的にあらゆる用途において顧客の特定業界にサービスを提供する態勢が整っています。 Warner: 設計者や設計チームは、通常どのような問題により、設計サービスプロバイダーのサポートを探し求めることになりますか? Miller: お客様は通常、次の3つの理由のいずれかにより、サポートを求めます。 1) 自社内に設計能力がなく、外注して変動型のコストモデルを維持している場合。需要にかかわらず人材やハードウェアおよびソフトウェアの固定間接費がかかる自社設計に対し、外注はサポートが必要な場合のみ費用が発生します。 記事を読む
統合ツールがマルチボードPCBシステム設計を容易にする方法 統合ツールがマルチボードPCBシステム設計を容易にする方法 1 min Blog PCB設計者 電気技術者 システムエンジニア/アーキテクト PCB設計者 PCB設計者 電気技術者 電気技術者 システムエンジニア/アーキテクト システムエンジニア/アーキテクト コンピューターを分解したことがあるなら、システム全体が単一のPCBに収まるわけではないことを知っているでしょう。さまざまなアプリケーションで使用される最も複雑なデバイスはマルチボードシステムであり、これらのシステムを設計するには想像力、計画、そして適切な設計ソフトウェアが必要です。 リジッドフレックスPCBは、マルチ回路ボードシステムの別のタイプに過ぎず、ボードの各部分を設計する際の同じ設計コンセプトが、それらを接続するフレックスリボンにも適用されます。すべてのマルチボードシステムがリジッドフレックスシステムである必要はありませんが、設計ソフトウェア内でボード間の接続を設計する必要があります。統合設計環境で最高の設計ツールを使用すれば、どのタイプのマルチボードシステムも簡単に設計できます。 マルチボード設計における機能ブロック マルチボードPCB設計を最初に作成するときは、スキーマティックを構築する前に、システムの30,000フィートビューから始めるのが最善です。マルチボードシステムは、単一のシステムにさまざまな機能を組み込みます。システムのブロック図を作成すると、システム内の異なる機能がどのように機能ブロックに分けられるかがより簡単に見えます。 ブロック図で機能ブロックが分離されているように、マルチ回路基板システムでは異なる機能ブロックを異なる基板に分けることができます。コンピュータの動作を考えると、表示、メモリ、ネットワーク接続、その他必要に応じた機能用の異なるカードがあります。 機能ブロックに基づいて異なる基板に機能を分離することは、各基板の適切なレイヤー数を決定するのにも役立ちます。すべてを一つの基板に組み込む場合、システム全体で最大レイヤー数をデフォルトにする必要があります。代わりに、基板が分離されている場合、異なるブロックでレイヤー数を少なくすることができ、全体の製造コストを下げることができます。システム内の一部の基板では、高レイヤー数の多層基板に HDIデザインが必要になる場合がありますが、他の基板は単純な4層基板で十分に機能します。 パッケージ仕様は、マルチボードシステム設計における各基板のサイズと形状を制限します。パッケージが何らかの方法で曲がる必要がある場合は、複数の基板を接続するためにフレックスリボンを使用する必要があります。それ以外の場合は、銅線を使用した標準的なコネクタとケーブルでシステム内の基板を接続できます。 3D設計ツールは、優れたマルチボードシステムを構築するのに役立ちます 痛みの原因を知る PCB設計ソフトウェアがIC設計など他の領域ではなく、マルチボードPCB設計に実際に焦点を当てている場合、マルチ回路基板および リジッドフレックスシステムを設計するための専門ツールが含まれます。これには、単一のプロジェクト内でシステム内の各ボードの構造をカスタマイズできるスタックアップマネージャーが必要です。ほとんどの設計プログラムでは、複数の設計プロジェクト間で前後に切り替える必要があり、これにより重要なシミュレーション、分析、および検証機能が実質的に無用になります。 マルチボードシステムの設計をリジッドフレックスボードとして作成することにした場合、レイヤースタックアップマネージャーは、フレックスリボンをPCBの別のセクションとして、固体銅層またはクロスハッチ銅として、電力、グラウンド、および信号を簡単にリンクできるようにする必要があります。これはすべて、単一のプロジェクトおよび単一のプログラム内で行われる必要があります。これにより、設計機能が視覚化、分析、およびルールチェックツールと直接統合されることを保証します。 デザインの検証は、要求に応じて設計ルールに対するチェック以上のものです。複数の回路基板やリジッドフレックスシステムを扱う場合、潜在的な信号問題を診断するための統合シミュレーションと、フォームファクターを検証するための3Dビジュアライゼーション機能が必要です。他のPCB設計プラットフォームでは、これらの機能をアドオンとして購入する必要があり、これらのアドオンは単一のプログラムに直接統合されません。依然として設計モジュール間を移動する必要があり、これは生産性を低下させ、データエラーの大きなリスクを生み出します。 最高のマルチボード設計ツール マルチボードおよびリジッドフレックスシステムを扱うには、ボードが単一のシステムにどのように同期するかのアイデアを得ることができる3D設計およびビジュアライゼーションツールが必要です。機械設計チームと電気設計チームは、各エリアの設計プログラムが統合されていなかったために、互いに孤立していました。 MCADとECADの機能を単一のプログラムで統合するソフトウェアを使用すると、各領域の設計者が協力して、デバイス全体に最適なボードサイズ、配置、および機能性を決定でき、全体的な設計プロセスを合理化できます。 本格的なMCAD/ECADコラボレーションにより、PCBデザイナーは機械設計者やDFMエンジニアと協力して、3Dモデル内で基板を分析することができます。これにより、製造ラインを離れる前に衝突を防ぐことが容易になります。設計チーム間でファイルが受け渡される反復的な設計プロセスを使用する必要はありません。代わりに、製品の3Dモデルを.STEPファイルで組織全体で共有でき、設計プロセスに関わる全員が単一のプログラムで設計作業を行うことができます。 階層的な回路図で設計をサポートするPCB設計ソフトウェアを使用すると、マルチボード設計がはるかに簡単になります。デバイスを異なる機能ブロックに分割する際、各ブロックに独自の回路図を割り当て、ブロック図のように簡単に回路図をリンクさせることができます。それから、設計の各部分を異なるPCB上でキャプチャし、マルチボードシステム設計が実際に形になるのを見ることができます。 フレックスリボンを使用して基板間の接続を構築することにした場合、リジッド領域とフレックス領域を定義し、フレックスリボンがリジッドセクションの内部層にどのようにリンクするかを定義できるレイヤースタックアップマネージャーが必要です。CADツールは、2Dおよび3Dでボードの配置を簡単に視覚化できるようにする必要があり、ルーティングツールはフレックスリボンを介して相互接続を非常に簡単にルーティングできるようにする必要があります。 記事を読む
マイクロビア製造プロセスとHDI基板 マイクロビア製造プロセスとHDI基板 1 min Blog PCB設計者 PCB設計者 PCB設計者 初期のHDI製造 高密度相互接続プリント基板に関する取り組みが始まったのは、研究者たちがビアサイズの縮小方法を調べ始めた1980年のことです。最初に革新を起こした人物の名前は分かりませんが、初期のパイオニアには、MicroPak LaboratoriesのLarry Burgess氏(LaserViaの開発者)、TektronixのCharles Bauer博士(光誘電ビアの開発者)[1]、ContravesのWalter Schmidt博士(プラズマエッチングビアの開発者)などがいます。 初の製品版のビルドアップ基板(シーケンシャルプリント基板)は、1984年のHewlett-Packardによるレーザードリル加工FINSTRATEコンピューター基板です。1991年には、日本のIBM野洲によるSurface Laminar Circuit(SLC)[2]とスイスのDyconexによるDYCOstrate [3]が続きました。図1は、初のHewlett Packard FINSTRATE基板を表紙に載せた Hewlett-Packard Journal(1983年)です。 HPのFinstrateレーザービア レーザードリル加工のマイクロビアは、HPが意図的に開発したのものではなく、新製品の32ビットマイコンチップをリバースエンジニアリングした結果としてもたらされました。「FOCUS」と呼ばれたこのチップは、NMOS-IIIで開発された32ビットのマイクロプロセッサーで、極めて大きい電流を消費するという特性を持っていました。当初意外に思われたのは、この新しいマイクロプロセッサーが、1.6mm厚の基板にある標準0.3mm径のスルーホールビアのインダクタンスをドライブできないという点です。ドライブできたのは、20~30ナノヘンリーのインダクタンスか0.125mmのブラインドビアのみでした。次の驚きは、FR-4の通常損失(Dj=0.020)をドライブするエネルギーがないことでした。そのため、純粋なポリテトラフルオロエチレン(PTFE)が使用されました。ICの冷却要件によって、極小のブラインドビアと非常に低損失の絶縁体を備えたメタルコア基板が必要とされていたため、ダイレクトワイヤボンド集積回路(IC)を備えた銅コアのビルドアップ基板が作成されました。 図1. 一般生産された最初のマイクロビア。1984 年に生産を開始したHewlett Packard 記事を読む
次の多層PCBでの非対称ストリップライン 次の多層PCBでの非対称ストリップライン 1 min Thought Leadership 芸術、科学、そして一般的に自然における対称性の美しさは、何か不思議なものがあります。絵画や図面の要素間の視覚的なバランスは、芸術作品の成否を左右することがあります。PCB設計は、工学であると同時に芸術でもあり、対称性は技術的な役割と同じくらい美的な役割を果たします。 高周波同軸ケーブルや導波管の代替品としての謙虚な始まり以来、ストリップラインは多層RFおよびHDI PCB設計者の間で主要な存在です。これらの導体は、周囲の誘電体が放射を抑制し、分散補償を提供する多層PCBの内層に密接に配置することができます。ロバート・バレットに感謝します! 対称対非対称ストリップライン配置 対称ストリップラインは、埋め込まれたマイクロストリップの次に単純な埋め込みトレース配置です。マイクロストリップや埋め込みマイクロストリップトレースとは対照的に、ストリップライントレースはPCBボード層に埋め込まれ、トレースの上下には固体の銅グラウンドプレーンが配置されます。多層PCBの内層には通常、ストリップライントレースが含まれています。 これらのトレースはグラウンドプレーンの間に埋め込まれているため、特に望ましい EMI耐性を持ち、PCB上の他のコンポーネントはストリップラインによって生成されるEMIの影響を受けません。 対称ストリップラインとは対照的に、非対称ストリップラインは基板の中央に埋め込まれていません。非対称ストリップラインは、周囲のグラウンドプレーンの一方に近い位置に配置されます。非対称ストリップラインを使用して信号をルーティングする場合、より近いグラウンドプレーンをストリップラインの参照として使用する必要があります。これにより、グラウンドプレーンにより強いリターン信号が誘導されることが保証されます。 より複雑な配置では、ストリップラインを単一層内の導体のカップルされた並列ペアとして配置することができます。このエッジカップル配置では、同じ層にトレースのペアを同じグラウンドプレーン間の距離で配置します。この配置により、特定の層内で差動ペアのルーティングが可能になります。 より興味深い配置は、ボードカップル配置を使用することです。ここでは、2つの非対称ストリップラインが対称配置で互いの上に積み重ねられます。これには、積み重ねられたストリップラインを収容するためにより厚い基板が必要になるかもしれませんが、横方向の基板スペースを節約し、2つのグラウンドプレーン間のより高い相互接続密度を実現します。この配置は、2つのストリップラインが並列であるため、差動ペアのルーティングにも使用できます。 緑色の多層PCB上のマイクロストリップとビアの相互接続 複数の計算機、複数の値 すべての可能なトレース配置に対するインピーダンス方程式をすべて暗記していなくても恥ずかしいことはありません。ストリップライン配置のためのインピーダンス計算機をインターネットで探している場合、結果をよく見て、他の計算機の結果と比較する必要があります。 また、さまざまな計算機で使用されている方程式を比較することも重要です。単一の非対称ストリップラインのインピーダンスを計算する方法はいくつかあります。一部の計算機は対数関数の差を使用し、別の計算機は幾何学的パラメータの数に対して約6次の依存性を持つべき乗関数を使用し、インターネット検索を通じて見つけることができる他の公式も間違いなく存在します。 これらの計算機は、ストリップライン配置を定義する構造パラメータによって、大きく異なる結果を生み出すことがあります。異なる2つの計算機は、5から10オームの差を生じさせることがあります。真のインピーダンス値は、これらの値の間のどこかにある可能性が高いです。これは、PCBでのインピーダンスマッチングに大きな問題を引き起こします。 高速または高周波信号を扱う際、5オームのインピーダンス不一致は、特定の周波数で 共振によるリンギングなどの問題を引き起こすのに十分な影響を与えます。高周波信号では、伝送線上の共振は大きな放射を引き起こします。非対称ストリップラインでは、これがHDIボードで問題を生じさせる可能性があります。幸いなことに、周囲の誘電体のため、ルーティング密度が低いボードはこのEMIの影響を受けません。 インピーダンス計算機を使用する際に生じうるこれらの潜在的な問題を考慮すると、インピーダンスを決定するために数値シミュレーションを使用することが最善です。ほとんどの人はこのタイプのソフトウェアにアクセスできませんが、投資する価値はあります。代わりに、別の設計戦略を検討して リンギングを防止または抑制することを考えてください。 パラメータ変調と差動ペア 記事を読む