Altium Designer - 回路・基板設計ソフトウェア

簡単、効果的、最新: Altium Designerは、世界中の設計者に支持されている回路・基板設計ソフトウェアです。 Altium DesignerがどのようにPCB設計業界に革命をもたらし、設計者がアイデアから実際の製品を作り上げているか、リソースで詳細をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
PCB製造でのシルクスクリーンに関する問題の発生を防止するには PCB製造でのシルクスクリーンに関する問題の発生を防止するには 1 min Blog 1996年のオリンピックをご覧になっていれば、最後まで奮闘したケリー・ストラグ選手のことを覚えていらっしゃる方もいるでしょう。ストラグ選手は足首を痛めた状態で最後となる2回目の跳馬を跳び、アメリカチームに金メダルをもたらしました。彼女が教えてくれたのは、最後までやり抜くことの大切さでしょう。とはいえ、私たちはそれが回路基板設計となると、プロジェクトの最後には気が緩んで油断してしまいがちです。デザインを製造にリリースする前の最後の作業の1つは、基板のシルクスクリーンとデジグネータを調整することです。しかし、この手順が他の設計作業ほど真剣にとらえられていないことは多々あります。その結果、製造業者によってデザインが却下され、修正するよう送り返されてくるケースもあります。今回は、PCBのシルクスクリーンに潜在するいくつかの問題とそれらを回避する方法について見ていきましょう。 ケリー・ストラグ選手のように最後までやり抜く PCBのシルクスクリーンに潜在する問題とは 皆さんのなかには、「問題など起こりようがない」とお考えの方がいらっしゃるかもしれませんが、デザインをリリースする前にシルクスクリーンの最終調整をしなかったことが原因で発生する問題をいくつかご紹介しましょう。 コンポーネントが正しく表示されていない : 意図するコンポーネントがシルクスクリーンで正確に表示されていないと、デバッグや修正を担当する基板技術者の混乱を招く可能性があります。たとえば、関連するコンポーネントが正しく表示されていない形状、誤ったピンの数、誤ったピンに表示されている極性指示がこれにあたります。キャップのプラス側をチェックしたときに、極性指示が逆になっていることを知った技術者がどのような不安を感じるのかについては、皆さんも想像がつくでしょう。 テキストが判読できない : シルクスクリーンのテキストが判読できない場合、基板技術者はデジグネータの確認に余計な時間を費やさなければなりません。多くの場合、これは小さすぎて判読できないフォントサイズや誤った線幅を使用していることが原因です。線幅が小さすぎると基板にうまくスクリーン印刷ができず、逆に線幅が大きすぎると膨張してしまい、同じく判読不能になります。 デジグネータが誤ったコンポーネントに配置されている : デジグネータが誤ったコンポーネントに配置されている場合があります。これは、コンポーネントを移動したもののデジグネータが移動されていない場合に発生したか、設計者側の誤りの可能性があります。いずれにしても、基板のテストを実施する基板技術者は、回路図にあるコンポーネントと一致しないものをチェックすることになります。 実装するコンポーネントでデジグネータが覆われている : 実装する部品の下に配置されているデジグネータは、これまでに嫌というほど見てきました。密集したデザインでは避けられない場合があるものの、なんとかして阻止しなければなりません。デジグネータが見えない状態で「C143」を必死に探している基板技術者の姿を想像してみてください。 シルクスクリーンのインクが金属を覆っている、または穴に流入している : シルクスクリーンのインク が表面実装ピンやメッキされたスルーホールなどの露出金属 記事を読む
電子機器のアクティブ冷却技法の比較 電子機器のアクティブ冷却技法の比較 1 min Thought Leadership 電子機器にとって、冷却は極めて重要です。私がこれを痛感したのは、使っているノートパソコンのマザーボードが溶けたときでした。私は2010年に、グラフィックを多用するビデオゲームを試すため、当時最新のコンピューターを購入しました。その機械は非常に優れたグラフィックカードが搭載されていましたが、熱管理システムが小さすぎました。ゲームを遊び始めたとき、キーボードが触れないほど熱くなったことで、問題があると気付くべきでした。その直後、私のコンピューターは動かなくなりました。コンピューターを修理店に持って行ったところ、内部で何かが溶けていると告げられました。幸い保証期間内だったので、修理代は製造業者持ちでした。もしもこのコンピューターの設計に、もっと強力な冷却システムが組み込まれていたら、この事故は最初から避けられたかもしれません。機械が溶けてしまうような設計をしたくない場合、回路を常に適切に冷却できるよう、各種の冷却技法を検討するのがいいでしょう。選択肢として、ファン、イオン風発生器、圧電性ふいごなどがあります。それぞれの熱管理プロセスには長所と短所があり、アプリケーションに最適な方式を決定するために役立ちます。 最適な冷却 基板が燃えることを防ぐだけでなく、最適な方法で冷却を行うべきでしょう。組み込みシステムや、その他の低消費電力アプリケーションを設計するときは、最も効率的な冷却システムが必要です。また、冷却プロセスが多くの領域を占めたり、多くのメンテナンスを必要としたりするのも望ましくありません。このため、それぞれのシステムの消費電力、サイズ、メンテナンスについて以下で解説します。 この冷却システムはお勧めしません。 ファン 私のノートパソコンが溶けてしまった後で、修理店は発熱を減らすため、グラフィックカードを性能の低いものに交換しました。しかし、依然として私のコンピューターでは過熱状態が発生しました。そこで私は、コンピューターがオンのときにはデスク用のファンを横に置くことにしました。コンピューターに内蔵されるファンについて解説しましょう。 消費電力 - ファンは単純で、初期投資が安価なため、アクティブ冷却方式として最も一般的なものです。しかし、ファンは比較的多くの電力を消費します。低消費電力のPCBを設計する場合、普通のファンによる冷却はお勧めしません。ただし、この規則についてはいくつかの例外、例えばSandia Laboratoriesの Sandia Cooler などがあります。このファンは非常に効率が高く、通常のファンと比べて消費電力を最大 7%削減 できます。 サイズ - サイズの小さい冷却方式が必要な場合、ファンは適していません。ファンは外形が大きく、取り付け用のフレームやモーターも必要となるため、比較的大型の回路用の手法です。 メンテナンス - 記事を読む
社内で放射電解強度の事前準拠テストを実行する方法 社内で放射電解強度の事前準拠テストを実行する方法 1 min Thought Leadership 素敵な瞬間が臭いによって台無しになった、そういう経験をお持ちでしょうか? かつて、少し前から気になっていた女性とデートをしました。全ては順調に運び、デートの最後に私は彼女を家まで送って行きました。彼女にキスしようとして身をかがめると……、口臭予防のミントキャンディを1粒渡され、おやすみのハグをされました。自分は良い雰囲気を出していると思っていても、実際には別のものが出ているということはよくあります。ワイヤレス回路にも同じことが言えます。設計とテストを行って、基板をEMCラボに送ったところ、基板からまるでニンニク臭のような電子的放射が出ていることが判明した、というような場合です。社内で事前準拠テストを実行すると、このような面目ない却下を避けることができます。機器に多少の費用がかかりますが、それによって何度もやり直さずに済みます。必要な機器が揃ったら、その使用法を学び、出力を読み取ります。幸い、スペクトラムデータは女性より理解しやすいものです。 事前準拠テストの利点 外出するとき、デオドラント剤を使い忘れることがあります。そして、日中の臭いチェックでそのミスに気付き、家に戻ってデオドラント剤をつける羽目になります。今では、家を出る前に臭いチェックをしています。事前準拠はこの朝の臭いチェックのようなもので、ふりだしに戻ることを防いでくれます。製品を市場へ送り出す過程において、これによって多くの時間とコストを節約できます。 製造サイクルの終わりが近づくと、物事が混乱をきわめていく傾向があります。ここでEMI準拠に失敗し、大きな修正が必要になる事態は最も避けたいことです。それだけでなく、テストラボは問題がどこにあるのかについて十分に示唆してくれないことがあり、この場合はさらに別のサイクルで問題の場所を推定し、チェックする必要があります。もし自分用の機器があれば、設計段階で社内で事前準拠チェックを行うことができます。これによって、最終検査が1回で合格する可能性を大幅に高めることができます。 基板に対して準拠テストを繰り返し行うのは、時間とコストを必要とします。最終評価には、1回で5,000ドル以上が必要になることもあります。また、問題は設計フェーズの間に修正する方が、後からの修正よりもはるかにコストが低くなります。基板が最終化した後で解決策を探すよりも、 PCBを変更 して問題を修正する方が安価に解決できます。事前準拠用の機器はそれなりに高価ですが、EMCチェックを2回も3回も行うよりは、はるかに安価です。複数の製品の開発を計画しているなら、社内で事前準拠を行えるようにするための投資は十分に引き合うものです。 このデバイスではとてもFCCを突破できないだろう。 必要な機器 口臭を解決する方法は色々とありますが、放射電解強度のテストを行う方法はそれほど多くありません。 絶対に必要な 機器がいくつかあり、 予算が潤沢なら揃えておいた方がいい 機器もいくつかあります。ツールには 最低3,000ドル の投資を予測してください。 テストの場所(必須) - まず必要なのは、テストを行うための場所です。専門家は高価な無響室で評価を実行します。専門家でなければ、市街地を離れた屋外、会議室、地下室などでも大丈夫です。このような場所は、実験と干渉する恐れのある外部からの信号を低減するため役立ちます。 記事を読む
伝導放出のテスト機器と低減のガイドライン 伝導放出のテスト機器と低減のガイドライン 1 min Thought Leadership 私が大学に通っていた頃、クラスの1つが非常に難しかったため、教授はいつも1週間前にテストの問題を渡してくれました。試験の前に何を勉強すべきか正確に教えられていても、多くの学生が不合格に終わりました。電磁両立性(EMC)の伝導放出解析も同じようなものです。デバイスが電源を通して、電力網に多くのノイズを返していないかどうかをチェックする必要があります。これを行わないとFCCにより、公共電源を破壊する存在と見なされます。電源を経由して電力網へ返されるEMIに関して、デバイスの事前テストを行うことは難しくありません。しかし、最終的なチェックを行うとき、多くの製品は不合格になります。最終段階で不合格になると、時間と費用の両方に大きな損失となります。適切な機器を用意し、いくつかの事前準拠テストを行うことで、このような事態をすべて回避できます。また、PCBの設計と電源を調べ、発生源で伝導の問題を完全に解決しておくのも良い考えです。 事前準拠テストの利点 大学の頃の話に戻りますが、試験で教科書を参照しても良いクラスがいくつかありました。多くの学生は、教科書を参照できるならテストは簡単に解けると思い、事前に勉強しませんでした。それは大きな間違いで、多くの学生が落第しました。多くの人々は、EMCの伝導放出の部分は放射放出に比べて単純だと想定しますが、その考え違いから同じように多くの失敗が引き起こされます。 伝導放出の最終テストで不合格になった場合、作業をやり直す必要があり、何千ドルも無駄に費やすことになります。大学の試験に落第することはまずいことですが、このようなテストでのしくじりは、クラス全員が落第するようなものです。事前準拠用の機器は高価ですが、認定テストのやり直しほど高価なものではありません。EMC評価に失敗すると、製品の市場投入も遅延する恐れがあります。大きな修正が必要になった場合、プロジェクトが大幅に遅延することが考えられます。開発の初期段階、問題を比較的簡単に修正できるうちに洗い出すのが賢明です。 大学のテストは実際の設計ほど難しくはありません。 事前準拠用の機器 伝導放出のテストに必要な機器は、 放射放出 のテストとほぼ同じです。このようなキットは一般に数千ドルの価格です。 スペクトラムアナライザー(必須) - スペクトラムアナライザーは事前準拠テストの基幹です。この機械を使用して、基板から発生するあらゆるEMIを解析できます。これはおそらく最も高価な機器で、価格は1,000ドル以上です。 ソフトウェア(必須) - 本の読み方を知らなければ、テストで教科書を参照することが許可されても意味がないのと同様に、スペクトラムアナライザーはソフトウェアが無くては役に立ちません。一部のスペクトラムアナライザーにはソフトウェアが付属していますが、そうでない場合は、無料のプログラムと互換性のあるアナライザーを選択しましょう。 ラインインピーダンス安定化ネットワーク(LISN) - この装置は、伝導放出には必要ですが、放射放出には必要ありません。LISNは電源のノイズから デバイスを絶縁 し、インピーダンスを一致させて、スペクトラムアナライザーが正確に動作できるようにします。正確なテストを希望する場合は、この装置が2つ必要なこともあります。 記事を読む
アナログGNDおよびデジタルGND接続にスターポイントを使用する方法 アナログGNDおよびデジタルGND接続にスターポイントを使用する方法 1 min Thought Leadership 私にとってデートで一番難しいのは、そもそも人に会うことです。私は技術者なので、生活の大部分をコンピューターの前で過ごし、いろいろな人と話をすることがありません。それが、デートサイトやデートアプリが素晴らしいアイデアだと思う理由の1つです。他の方法では全く不可能であろうつながりを持つのに役立ちます。他の人と絆を結ぶことは困難ですが、アナログGNDプレーンとデジタルGNDプレーンをリンクするのは、さらに困難です。ノイズが多いデジタルチップは、敏感なアナログ回路に干渉する場合があります。したがって、この2つは離す必要がありますが、一方で同じGNDに参照される必要もあります。プレーンを行き当たりばったりに接続すると、解決できないほど問題が発生する場合があります。そこでスターGNDの出番です。スターGNDでは、デジアナ混在信号回路の異なるGNDを結合できます。 デジアナ混在信号接地の問題 デートと同じように、デジアナ混在信号PCBの接地は、多くの 問題と解決策 があり複雑です。ご存知のように、EMIを減らすには、アナログ信号とデジタル信号を離しておく必要がある一方で、これらは一緒に接地する必要があります。接地が不適切だと、大きなGNDループができて、回路の中やおそらく周囲にノイズが発生します。 デジアナ混在信号基板での主な問題は、デジタル回路です。デジタルスイッチングチップは、ノイズが非常に多いのですが、単独では問題になりません。しかし、アナログ回路と組み合わせると、デジタルEMIはしばしば、 敏感なアナログ信号と混じって しまいます。このような理由で、一般に、 これらの2つのシステムは離しておく べきなのです。 アナログ回路とデジタル回路を離すことで、別の問題が発生します。それは、浮動接地です。アナログチップとデジタルチップは全て、適切に動作するため、 同じGNDに関連付ける 必要があります。別々のアナログGNDプレーンとデジタルGNDプレーンを好きな場所に接続すると、GNDループができます。大きなGNDループは、 アンテナの役目を果たし 、基板の他の部品に、またおそらく デバイスの外に EMIを放射します。スターGNDでは、アナログ回路とデジタル回路を一箇所に接続できます。すると、GNDループやEMI放射の可能性が低くなります。 全てのGND接続はスターGNDで終端する必要があります。 スターGND 多くの人々が、愛について説明しようとして失敗してきました。私はそれほど大胆ではないので、スターGNDの概要を述べるだけにします。 記事を読む
5G移動通信インフラにおけるMassive MIMOの利点 5G移動通信インフラにおけるMassive MIMOの利点 1 min Thought Leadership 編集クレジット: PureRadiancePhoto / Shutterstock.com 今は南カリフォルニアに住んでいますが、生まれはテキサスです。聞いたことがあるかもしれませんが、そこには「テキサスでは何でも大きい」という言い回しがあります。私が親戚中で一番背が高いので、私にはそれが本当であることが分りました。Massive MIMO(multiple input multiple output)アンテナアレイの背後にある精神もテキサスで生まれたと考えたいです。MIMOは何年も前からありますが、Massive MIMOは、特に5G分野で、注目され始めたばかりです。5Gは、高速で低遅延を可能にしますが、それには、Massive MIMO独自の利点を活用する必要があります。これらの利点には、優れたスペクトル効率やユーザー追跡などがあります。このテクノロジーを使えば5Gを実現できます。 Massive MIMOとは何か? 「テキサス」に真正面から向き合うと、多くの人は及び腰になります。例えば、テキサス州のステートフェアで ビッグテックス に迎えられたときなどです。同じようにMassive MIMOも、最初はやり過ぎだと感じるかもしれません。そこで、通常のMIMOから始めて、その後、「大規模(massive)」に話を進めましょう。 MIMOは、multiple input multiple 記事を読む