Easy, Powerful, Modern

The world’s most trusted PCB design system.

Altium Designer - 回路・基板設計ソフトウェア

PCBテストクーポンの設計方法とテストできる内容 Thought Leadership PCBテストクーポンの設計方法とテストできる内容 コンポーネントの動作速度が上がるにつれて、デジタル、アナログ、混合信号システムにおいて制御インピーダンスが一般的になってきています。インターコネクトの制御インピーダンス値が正しくない場合、インサーキットテスト中にこの問題を特定するのが非常に難しくなります。わずかな不一致がボードの故障を引き起こさない場合がありますが、テスト失敗の原因として不正確なインピーダンスを特定するのは難しい場合があります。特に、ベアボードインピーダンステストを容易にするために、正しいテストポイントやテスト構造がボードに配置されていない場合はそうです。 インピーダンスは多くのパラメータ(トレースの形状、ラミネートの厚さ、ラミネートのDk値)に依存するため、現在のところ、大多数のPCBは制御インピーダンスのためにテストされています。ただし、テストは通常、PCBと同じパネル上で製造されたPCBテストクーポンで実施されます(通常は端に沿って)。ボードスピンを迅速に進め、将来の設計を支援したい場合は、テストクーポンを設計して手元に置いておくことを検討すると良いでしょう。さらに、提案するインターコネクトのジオメトリに関する十分なドキュメントを製造業者に提供することは、製造業者が正しいテストクーポンを作成することを確実にするのに大いに役立ちます。 分離型または統合型PCBテストクーポン? テストクーポンの目標は、ボードの意図されたスタックアップを正確に捉え、正確なインターコネクトインピーダンステストを容易にすることです。これを行う方法はいくつかあります。制御インピーダンス用のテストクーポンでは、製造業者がパネルの端に少しスペースを残して、制御インピーダンステストのためのテスト構造を配置することがあります。テストクーポンは、ベンダーライブラリから選択されたり、業界標準(例えば、 IPC 2221B Appendix AのDクーポン)、またはいくつかのソフトウェアを使用して生成されたりすることもあります(例えば、 IPC 2221B Gerber Coupon Generator)。 時には、テストクーポンが実際のPCBに統合され、同じパネル上で別のセクションとして作成されるのではなく、実際のPCBに統合されることがあります。この場合、テストクーポンは、生成されたものやベンダー提供のテストクーポンから期待される典型的な外観を持たないかもしれません。Kella Knackは、 最近の記事で、製造業者であれば別のテストクーポンに、設計者であればプロトタイプボードに直接含めるべき一般的なテスト構造について説明しています。 テスト構造を直接ボード上に配置することは、スペースの無駄のように思えるかもしれませんが、プロトタイピング中はもちろん、大規模生産中でも、インサーキットテストに大いに役立ちます。もし、一般的でないインターコネクトの幾何学構造を設計している場合、大量生産前にインピーダンスを評価する必要があります。インターコネクト設計を含む単一のボードを設計し、社内でテストすることは損ではありません。テストボードに前もって費用がかかりますが、生産前に必要な測定値を得られれば、後でボードを再設計する必要がなくなるかもしれません。 インピーダンスを超えて 相互接続インピーダンス、PDN容量、導体損失、伝搬遅延は、適切なテスト構造を用いればすべて測定できます。カスタム設計されたテストクーポンに配置された他のテスト構造は、基板ラミネートの 誘電率を決定するのに役立ちます。マイクロ波/ミリ波領域に達すると、挿入損失や空洞放射などがテストされるべきで、制御インピーダンス線上のアナログ信号が重大な劣化を経験しないようにする必要があります。
ウェアラブルでのハプティック振動とフィードバックの駆動 Thought Leadership ウェアラブルでのハプティック振動とフィードバックの駆動 拡張現実、仮想手術、四肢の置換、医療機器などの新技術は、装着者が自分の環境とどのように相互作用しているかを完全に感じ取るために、触覚振動モーターとフィードバックを取り入れる必要があります。これらの最先端のアプリケーションが触覚振動とフィードバックを含まない場合、ユーザーは実際のまたは仮想の環境を理解するために他の四つの感覚に頼らざるを得ません。触覚フィードバックをサポートする低コストのコンポーネントは、貝殻型携帯電話の時代から利用可能であり、デザイナーの想像力のみが限界です。 最近の新規クライアントからの問い合わせを受けて、私は触覚振動とフィードバックの世界に飛び込むことになりました。もしあなたがオーディオ電子機器のデザイナーなら、トランスデューサーとそれらをアンプ、MCU、または他のコンポーネントとどのように組み合わせるかについておそらく馴染みがあるでしょう。トランスデューサーに馴染みがあるかどうかにかかわらず、触覚フィードバックを引き起こすために使用されるセンサーを考慮すると、解決すべき組み込みソフトウェアの問題があります。 触覚振動モーターの選択 触覚振動モーターには、変動振幅型と変動周波数型の2種類があります。明らかに、これらのモーターは、垂直振動、リニア、偏心回転質量(ERM)振動モーターなど、異なるモーター構造に分けることができます。ERMモーターは、古いポケベルや初期の携帯電話に一般的でした。垂直振動モーターとリニアモーターは、パッケージに対して力を駆動する方法が似ています。これらのモーターは、ボードまたは一対のワイヤーを介してパッケージに取り付けることができます。 上に示されたコイン/パンケーキ型は基本的に振幅制御された直流モーターであり、モーターにかかる直流電圧を変えることで、周波数を約10000 RPMから約15000 RPMまで変えることができます。これらのモーターを駆動するために必要な直流電圧は通常2Vから5Vの範囲で、デバイスは約50mAから約100mAの間を必要とします。過去20年間に行われた多くの研究によると、ハプティクスに最適な振動周波数は150Hzから180Hzの範囲であることがわかっています。ACバージョンも利用可能です(下の表を参照してください)。 もう一つのタイプのハプティック振動モーターはリニア共振アクチュエータ(LRA)です。このタイプのモーターは狭い帯域内で強い共振を持ちます。これらのデバイスは周波数制御されたハプティクスには使用すべきではありませんが、駆動周波数(つまり、ACモーター)で反応するため、電圧制御されたハプティクスには非常に有用です。 インピーダンスマッチングかインピーダンスブリッジングか? これらのモーターを実際のシステムに組み込むことはそれほど難しくありません。なぜなら、 大きなモーターと同じような導電性および放射性のEMI問題を引き起こさないからです。ボード上に配置する場合(つまり、SMDコンポーネントとして)、ボードの端に近く、ユーザーが振動を最もよく感じられる領域の近くに配置する必要があります。これらのコンポーネントのためのボードをレイアウトする際は、 他の小型DC/ACモーターと同様に行ってください。 電圧と電流の要件により、振動モーターをドライバーに接続する際には常に、 インピーダンスマッチングとインピーダンスブリッジングのどちらを使用するかという問題があります。触覚振動モーターは、低周波の電気信号に応答して特定の低周波の機械振動を出力するトランスデューサーです。 トランスデューサーに関するいくつかのチュートリアルを読むと、技術的に高度な人気のあるウェブサイトでさえ、ソースICとトランスデューサー間のインピーダンスマッチングが必要であるとする設計推奨事項が見つかります。これは、EDNやHyperphysicsで見つかるまさにそのようなアドバイスでしたが、いくつかの苦情がサイトの所有者にコンテンツの変更を強いました。インピーダンスマッチングまたはインピーダンスブリッジングを使用するかどうかは、ドライバーの性質によって異なります。 ドライバーが実質的に電流制御型の電圧源(つまり、出力インピーダンスが低い)である場合、インピーダンスブリッジングを使用して高出力電圧をモーターに伝達するべきです。これは、現代のオーディオ機器で行われていることと基本的に同じです。しかし、ドライバーが逆の機能を持つ場合、モーターはそのインピーダンスがソースインピーダンスよりもはるかに低いものを選択すべきです。伝送線効果は、数百Hzの範囲で動作しているため、ここでは関連ありません。 触覚フィードバックアルゴリズム 触覚フィードバックの重要な部分は、システムに入力される他の入力が変化するにつれて、振動感覚を変化させることです。データは外部センサーからの測定値と共にシステムに入力され、触覚振動の強度を制御するために使用されます。これらのシステムは、オープンループまたはクローズドループシステムであり、産業制御システムで使用される制御戦略に似ています。 触覚フィードバックアルゴリズムは、デバイスが製品の他の機能をサポートするのに十分な入力を持っている限り、MCUや小さなFPGAに組み込むのに十分軽量です。触覚フィードバックアルゴリズムは特定の製品に合わせて設計する必要があり、これらのアルゴリズムは依然として科学的および工学的研究の活発な分野です。 新しいPCBに触覚振動とフィードバックを組み込む予定の場合、
Altium Designerでブラインドビアとベリードビアを使用する Thought Leadership Altium Designerでブラインドビアとベリードビアを使用する 5ポンド用のバッグに10ポンドの荷物は入らない――この古いことわざは、PCB設計の配線トレースに特にあてはまります。残念ながら最近はこのような要求がノルマになっているように見えます。近頃はだれもが設計の密度を上げることやフォームファクタを削減すること、あるいはその両方を望んでいますが、これに対応するための方法の1つが、配線でブラインドビアとベリードビアを使用することです。これらのビアを使うと、スルーホールビアが接続されていないレイヤーでスルーホールビアが占めていたはずのスペースを利用できるため、配線方法の選択肢が広がります。 この設計技術が開発されてから、かなりの時間がたっているものの、まだ使用したことがないPCB設計者は大勢います。これらのビアを使い始めたとしても、他のビアに戻りたくなくなる恐れがあるため注意が必要です。また、製造コストも上がってしまうため、使用にあたっては事前の計画も必要です。ブラインドビアとベリードビアの使い方をよくご存じでない方のために、Altium Designerでのこれらのビアの使い方を簡単に説明します。 Altium Designerでビアを使用する 製造、実装を通して、レイアウトを正確かつ確実なものにする必要があります。選択した材料とメッキ、使用予定の半田、コンポーネントと試作品の入手した見積もり、基板のその他の要件も考慮します。Altium Designerのブラインドビアとベリードビアは、レイヤースタック全体ではなく特定のレイヤーを接続するように設定される以外は通常のビアと同じです。そのため、ブラインドビアとベリードビアの設定および使用方法を理解するには、まず通常のビアの使い方を理解する必要があります。 Altium Designerのパッドスタックとビアは、属性を定義することで作成される設計オブジェクトです。パッドスタックとビアの作成を完了するには、それらのサイズ、穴のサイズ、許容差、その他の属性を指定します。これらは、テンプレートから作成することも、その場でご自身で定義することも可能です。下の画像は、PCB設定メニューのビアのデフォルト設定を示しています。 Altium Designerでのデフォルトのビア設定 上図に、デフォルトビアに使用したテンプレート、穴情報、ビアのサイズ情報を示します。また、Altium Designerでビアの詳細をコントロールするように以下の基準に従って設定できます。 [Simple]: 1つのサイズですべてのレイヤーに対応 [Top-Middle-Bottom]: トップ、ミドル、ボトムのサイズを個別に指定できます。 [Full Stack]: 全レイヤーのサイズを個別に設定できます。
デカップリングコンデンサとバイパス配置ガイドライン Thought Leadership デカップリングコンデンサとバイパス配置ガイドライン 電力整合性の問題は通常、電源の観点から見られますが、ICからの出力を見ることも同じくらい重要です。デカップリングおよびバイパスコンデンサは、PDN上で見られる電力変動を補償することを目的としており、信号レベルが一貫しており、ICの電源/グラウンドピンで一定の電圧が見られることを保証します。次のPCBでこれらのコンポーネントを成功裏に使用するための重要なバイパスおよびデカップリングコンデンサ設計ガイドラインをいくつかまとめました。このブログでは、バイパスコンデンサとデカップリングコンデンサの違いについて取り上げます。 2つの関連する電力整合性の問題 デカップリングキャパシタとバイパスキャパシタは、異なる2つの電力整合性問題を解決するために使用されます。これらの電力整合性問題は関連していますが、異なる方法で現れます。最初に指摘すべき点は、「デカップリングキャパシタ」と「バイパスキャパシタ」という用語が電力整合性に使用される場合、それらは誤称であり、何もデカップルまたはバイパスしません。また、ノイズを地面に渡すわけでもありません。単に時間をかけて充電および放電し、ノイズの変動に対応します。これらの用語は、電力整合性戦略の一部としてこれらのキャパシタの機能を指します。 まず、デカップリングコンデンサを考慮しましょう。PCBデカップリングコンデンサの配置の目的は、低周波の電源ノイズ、 PDN上のリンギング、およびPDN上のその他の電圧変動に対して、電源レール/プレーンとグラウンドプレーン間の電圧が一定に保たれるようにすることと一般に言われています。電源とグラウンドプレーンの間に配置されたデカップリングコンデンサは、プレーンと並列になり、これにより全体のPDN容量が増加します。実際には、 インタープレーン容量が不足していることを補い、PDNインピーダンスを減少させるため、PDN電圧のリンギングが最小限に抑えられます。 バイパスコンデンサについて考えてみましょう。これらもPDNと駆動IC内で一定の電圧を維持することを目的としていますが、補償する電圧は出力ピンとPCBのグラウンドプレーンの間の電圧です。電源供給ピンとICのグラウンド接続の間に配置されていますが、異なる機能を果たします。それは、キャパシタからグラウンドへのバウンスを抑制することです。デジタルICがスイッチすると、ボンドワイヤー、パッケージ、ピンの寄生インダクタンスが原因で、ドライバーの出力とグラウンドの間の電圧が増加します。バイパスコンデンサは、グラウンドバウンス電圧とは反対の電圧を出力し、理想的には総電圧変動がゼロになるようにします。 上記のモデルでは、バイパスコンデンサ(CB)とICパッケージ/グラウンド接続上の漂遊インダクタンスL1を含む閉ループがあります。出力ピンとグラウンドプレーンの間で測定される グラウンドバウンス電圧 V(GB)に注目してください。残りのインダクタンスはすべて寄生成分であり、バイパスコンデンサの応答時間に影響を与え、グラウンドバウンスを補償します。理想的なモデルでは、バイパスコンデンサによって見られる電圧は、スイッチング中に漂遊インダクタンスL1によって生成されるグラウンドバウンス電圧を補償します。 バイパスコンデンサの配置ガイドライン キャパシタからグラウンドへのバウンスが発生する仕組みを見れば、 バイパスキャパシタをどこに配置するかは明らかでしょう。上記の回路モデルにおける寄生インダクタンスのため、バイパスキャパシタは電源ピンとグラウンドピンにできるだけ近く配置する必要があります。これは、多くのアプリケーションノートやコンポーネントのデータシートで見つかるアドバイスと一致しています。 寄生インダクタンスに関連するもう一つの考慮事項は、ICへの接続がどのようにルーティングされるかです。キャパシタからICピンへ短いトレースをルーティングするのではなく、キャパシタをビアを通じて直接グラウンドプレーンと電源プレーンに接続するべきです。 パッドとトレースの間隔要件をこの配置で守ることを確認してください。 なぜこのような配置が必要なのでしょうか?その理由は、グラウンド/パワープレーンの配置(プレーンが隣接する層にある限り)は非常に低い寄生インダクタンスを持つからです。実際、これはボード内で最も低い寄生インダクタンスの源です。ボードの裏側にバイパスコンデンサを配置できる場合、より良い配置を実現できるかもしれません。 デカップリングコンデンサの設計ガイドライン PDNで必要な PCBデカップリングキャパシタのサイズを決定した後、入力電圧の変動を補償できるように、どこかに配置する必要があります。実際には、複数を使用するのが最善で、並列に配置され、並列配置により有効な直列インダクタンスが低くなります。 古いガイドラインでは、基板上のどこにでも配置できるとされていました。しかし、これには注意が必要です。なぜなら、デカップリングキャパシタとターゲットICの間の寄生インダクタンスが増加し、PDNのインピーダンスとEMIへの感受性が高まる可能性があるからです。代わりに、エッジレートが速いICの場合、ターゲットICに近づけて配置するべきです。下の画像は、ICの近くに配置された典型的なバイパスおよびデカップリングキャパシタの配置を示しています。これは、キャパシタとICの間の寄生インダクタンスが非常に低いため、高速回路にとって最適な配置の一つです。
高電圧設計におけるIPC-2221計算機の使用 高電圧設計のためのIPC-2221 PCBクリアランス計算機の使用 PCB設計およびアセンブリの規格は、生産性を制限するものではありません。代わりに、複数の業界にわたって製品設計と性能の統一された期待値を作成するのに役立ちます。特定の設計用の計算機、監査や検査のプロセスなど、ツールはコンプライアンス向けに標準化されます。 高電圧PCB設計において、PCB設計の重要な一般規格はIPC-2221です。多くの重要な設計的側面がこの設計規格にまとめられており、そのいくつかは単純な数式に要約されています。高電圧PCBの場合、IPC-2221計算機を使用すると、PCB上の導電要素間の適切な間隔要件をすばやく判断できます。これにより、次の高電圧基板が動作電圧で安全に保たれるようになります。設計ソフトウェアにこれらの仕様が自動化された設計ルールとして含まれている場合、生産性を維持し、基板を構築する際のレイアウトの間違いを避けることができます。 IPC-2221とは IPC-2221(2012年発効のレビジョンB)は、多くのPCBの設計的側面を定義する、一般的に受け入れられている業界規格です。例えば、材料 (基板やメッキを含む)、試験性、 熱管理とサーマルリリーフ、 アニュラリングなどに関する設計要件が挙げられます。 一部の設計ガイドラインは、より具体的な設計規格に取って代わられています。例えば、IPC-6012とIPC-6018は、それぞれリジッドPCBと高周波PCBの設計仕様を提供します。これらの追加規格は、一般的なPCBのIPC-2221規格とほぼ一致するように意図されています。 ただし、IPC-2221は通常、製品の信頼性や製造歩留まり/欠陥を評価するために使用される認定規格ではありません。リジッド基板の場合、IPC-6012またはIPC-A-600のいずれかが、製造されたリジッドPCBの認定に通常使用されます。 IPC-2221B 高電圧設計における導体スペーシング 高電圧PCB設計の重要な設計要件は、IPC-2221B規格で指定されています。これらの1つは導体クリアランスであり、次の2つの点に対処することを目的としています。 高電界強度でのコロナまたは絶縁体破壊の可能性 樹枝状成長と呼ばれることもある導電性陽極フィラメント形成の可能性( 下記参照) 最初のポイントは、PCBの導体間に適切な最小クリアランスを設定することで最も簡単に制御できるため、最も重要です。2番目の影響は、適切な配線間隔、 材料の選択、処理での一般的な清浄度によっても抑えることができます。これらの影響を防ぐために必要な間隔は、IPC-2221規格の2つの導体間の電圧の関数としてまとめられています。 下の画像は、IPC-2221規格の表6-1を示しています。これらの値は、2つの導体間の電圧の関数として最小導体間隔を示しています。これらの値は、導体間のピークACまたはDC電圧のいずれかで指定されます。IPC-2221では、500Vまでの電圧に対して固定された最小導体間隔値のみを規定していることに注意してください。2本の導体間の電圧が500Vを超えると、下表に示す電圧ごとのクリアランスの値を用いて、最小導体間隔を計算することになります。500Vを超える各電圧は、表の一番下の行に示されている量だけ、必要な最小クリアランスに追加されます。 高電流時の温度上昇 すべての高電圧PCBが高電流で動作するわけではありませんが、高電流を使用するPCBは、導体の大きさが十分でない場合に高温上昇になる可能性があります。PCBの温度上昇は、導体のDC抵抗に関連するジュール熱によって発生します。したがって、高電流を流す導体の断面積は、電流も大きい場合は大きくする必要があります。