Easy, Powerful, Modern

The world’s most trusted PCB design system.

Altium Designer - 回路・基板設計ソフトウェア

ヒートシンクからのEMIとその対策方法 Thought Leadership コンデンサのヒートシンクからのEMIとその対策方法 適切なヒートシンクを選択することで、システムを冷却し、EMIを防ぐことができます. 明らかではないかもしれませんが、また、ほとんどの設計者がチェックするとは思わないかもしれませんが、ヒートシンクはスイッチング要素に接続されている場合、EMIを発生させることがあります。これは電源設計における一般的な問題であり、特にヒートシンクが高電流を引き出し、高周波でスイッチングするコンポーネントと接触する場合に発生します。ヒートシンクからのEMIを減らすには、導電部分と放射部分のバランスを取る必要があり、これを行うためのいくつかの簡単な設計手順があります。 ヒートシンクと寄生容量からのEMI ほとんどの設計者が基板上のコンポーネント用に ヒートシンクを選択することを考えるとき、彼らはおそらく単にメーカーの推奨に従うだけです。彼らはメーカーが推奨するサイズと同様のヒートシンクを使用するかもしれませんが、熱伝導率が高い材料で作られたものを選ぶかもしれません。設計者の中には、 アクティブ冷却対策、例えば冷却ファン、または(極端な場合には)液体冷却や蒸発冷却を選択する人もいます。これらの対策は、特にメーカーが必要なヒートシンクと組み立てガイドラインを提供している場合、標準化されたコンポーネントを使用する際に適切です。 CPUの速度が1 GHzを超えて以来、ヒートシンクからの放射および導電EMIがより目立つようになりましたが、これは電力電子およびコンピュータシステム業界外の多くの設計者には気づかれなかった可能性があります。今日では、一般的にヒートシンクは単に接地されるべきであり、これがEMIの問題を解決するとされています。実際には、これだけでは問題を完全に解決するわけではなく、問題を解決するには寄生容量を管理する必要があります。 EMIの両方のタイプは、スイッチングICと近くのヒートシンクとの間の寄生容量結合によって生じます。スイッチングトランジスタを持つ集積回路の構造を調べると、チップパッケージと任意の 熱伝導ペーストやインターフェース材料がキャパシタの絶縁領域を形成しているのがすぐにわかります。この寄生容量がヒートシンクに共通モード電流を誘導する責任があります。 MOSFETに垂直ヒートシンクが接着された例。 次に何が起こるかは、ヒートシンクが接地されているかどうかによります。ヒートシンクが接地されていない場合、ヒートシンクとチップは容量結合電流の地面への容易な戻り道がないため、放射されたEMIの源として機能します。電流はヒートシンク内の複数の電磁共鳴を励起し、高電流と強い放射を持つヒートシンク内の一連の領域を作り出します。これは、ヒートシンクが通常デフォルトで接地される理由の一つです。しかし、ヒートシンクに誘導された強い電流が地面に向けて偏向されると、 グラウンドリターンパスに応じて、近くの回路で伝導EMIの源を作り出す可能性があります。 なぜヒートシンクからの放射または伝導EMIがより頻繁に対処されないのでしょうか?その理由はいくつかあります。通常、ヒートシンクからのEMIが顕著になるのは以下の二つの場合です: スイッチング時の高電流。 これは、大きなスイッチングレギュレータで大型トランジスタがスイッチングする電力電子工学における一つの問題です。より短い時間でより高い電圧にスイッチングすると、ヒートシンク内のより大きな変位電流が生成されます。 プロセッサの高速スイッチング。 より高速に動作するプロセッサは、ヒートシンク内に大きな変位電流を簡単に生成することができます。また、ヒートシンク内の高周波共鳴を容易に励起することもできます。 どちらの場合も、高電圧/電流のスイッチング電源を設計する際には、ヒートシンクへの容量結合を考慮する必要があります。他のアプリケーションには、低電圧で動作するデバイスのGPUやCPUのためのVRMが含まれます。 ヒートシンクからの伝導および放射EMIのバランス
CAMエディタを活用する CAMエディタを活用する プリント基板CADのAltium DesignerはCAMエディタを備えており、PCBからGerber出力を実行すると、出力されたGerberデータがCAMエディタに自動的に読み込まれ、アートワークイメージが画面に表示されます。 プリント基板の製造に際して設計者は、Altium DesignerのPCBデータではなく出力されたGerberデータに対して責任を負はなくてはなりません。CAMエディタはその為に必要なチェック機能に加え、テストクーポンの追加や面付け等、製造上の要件を満たす為の多くの編集機能を備えています。 そこで、今回は、このCAMエディタの機能をいくつか紹介したいと思います。 Gerberイメージの表示 CAMエディタは、PCBエディタから出力されたGerberデータを読み込んで表示します。これにより、Gerber出力の段階で発生した過りを発見することができます。 CAMエディタでは表示する層のオン/オフや拡大/縮小が自由にででき、目視による確認が容易です。また、レポート機能などによって数値を取得して、より精密な確認を行うことができます。 デザインルールチェック CAMエディタはデザインルールチェック機能を備えています。この機能は、[解析] – [PCB デザインをチェック /修正] によって利用できます。 デザインルールチェックの設定と実行 各項目に規定値を入力し、[OK]ボタンで実行。エラーを自動的に修正する事ができる。この機能を利用する為には、[ツール] - [ネットリスト] -
高電力設計用のPCBトレース幅と電流の関係表 高電力設計用のPCBトレース幅と電流の関係表 銅は融点が高く強力な導体ですが、温度を低く保つための工夫が必要です。これは、温度を特定の制限内に保つために、電源レールの幅を適切にサイズ設定する必要がある箇所です。ただし、ここでは、特定のトレースを流れる電流を考慮する必要があります。電源レール、高電圧コンポーネント、および熱に敏感な基板のその他の部分を使用する場合、レイアウトで使用する必要がある電源トレース幅を、PCBトレース幅と電流の関係表を参照して決定できます。 もう1つのオプションは、IPC-2152/IPC-2221規格の計算機を使用することです。また、PCBトレース幅と電流の関係表は必ずしもすべてを網羅しているわけではないため、IPC規格の等価トレース幅と電流のグラフの読み方を知っておくと役立ちます。この記事で必要なリソースを確認します。 高電流設計で低温を保つ PCB設計と配線においてよく浮かぶ質問の1つは、任意の電流に合わせてデバイスの温度を特定の制限内に維持するため、またはその逆の状況で求められる推奨電源トレース幅を決定することです。典型的な運用上の目標は、基板の導体温度上昇を10~20°C以内に保つことです。また、高電流設計における目標は、温度上昇が必要とされる動作電流の制限内に収まるようにトレース幅と銅箔重量を調整することです。 IPCは、特定の入力電流に対するPCBトレースの温度上昇を適切にテスト・計算するための規格を開発しました。これらの規格がIPC-2221およびIPC-2152であり、どちらにもこれらのトピックに関する大量の情報が含まれています。明らかに、これらの規格が対象としているものは極めて広範で、ほとんどの設計者は、すべてのデータを解析してトレース幅と電流の関係を明確にする時間がありません。そこで、こちらで、電流と温度上昇を関連付けるのに役立ついくつかのリソースをまとめました。 トレース幅と電流の関係表( 下記参照) トレース温度上昇用 IPC-2221計算機 トレース温度上昇用 IPC-2152計算機 以下の動画では、関連するIPC規格について概説し、予測力と適用性に関してそれらがどのように異なるかを説明しています。また、電流制限を計算するためのリソースや、特定の入力電流に対して予想されるトレース温度の上昇も示しています。 PCBトレース幅と電流の関係表 IPC 2152規格は、トレースとビアのサイズを決定する第一歩となります。これらの規格で指定されている式は、特定の温度上昇に対する電流制限を計算するための簡単なものですが、制御されたインピーダンス配線は考慮されていません。とは言え、PCBトレース幅と電流の関係表を参照することは、PCBトレース幅/断面積を決定する優れた方法です。これにより、トレースで許容される電流の上限を効果的に決定できます。これを使用して、制御されたインピーダンス配線用のトレースのサイズを決定できます。 高電流で動作する基板で温度上昇が非常に大きな値に達すると、基板の電気的特性が高温で対応する変化を示すことがあります。基板の電気的および機械的特性は温度によって変化し、基板は高温で長時間使用すると変色したり壊れやすくなったりします。そのため、私の知り合いである設計者たちは、温度上昇が10°C以内に収まるようにトレースのサイズを決めています。これを行うもう1つの理由は、特定の動作温度を考慮するのではなく、幅広い周囲温度に対応するためです。 以下のPCB電源トレース幅と電流の関係表は、銅箔重量1 オンス/平方フィートで温度上昇を10°Cに制限する多くのトレース幅と対応する電流値を示しています。PCBのトレースサイズの決定方法に関する説明は以上です。 電流 (A)