Altium Designer - 回路・基板設計ソフトウェア

簡単、効果的、最新: Altium Designerは、世界中の設計者に支持されている回路・基板設計ソフトウェアです。 Altium DesignerがどのようにPCB設計業界に革命をもたらし、設計者がアイデアから実際の製品を作り上げているか、リソースで詳細をご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
PCBコンポーネントの反りの原因 PCBにおけるコンポーネントの反りの原因 1 min Blog PCB製造業者のスタッフが、パッケージの歪みが問題になっていると思われると私に説明したことがあります。これまで、PCBAで使用される標準的なコンポーネントパッケージでは、このようなことは非常にまれだと思っていました。残念ながら、PCBとコンポーネントの両方でコンポーネントの歪みが発生する可能性があります。機械的な取り扱いミスによる曲がりは明らかですが、機械的な影響がなくてもコンポーネントの歪みを引き起こす可能性のある他の問題もあります。 この記事では、PCB、特に基板とコンポーネントでの歪みについて概説します。基板の歪みの可能性は、PCBラミネート材料がわずかに柔軟であることを考えると明らかですが、コンポーネントでの歪みの可能性はそれほど明らかではありません。 PCBコンポーネントの歪みが発生する場所 コンポーネントの歪みは、PCB組み立て中に発生することもありますし、組み立て施設に到着する前にコンポーネントが歪んでいることもあります。時々、製造や配送中に発生した曲がりや完全に平らではないなど、歪んだパッケージングを持つコンポーネントを受け取ることがあります。ほとんどの場合、ほとんどのコンポーネントと組み立てでの歪みは非常にわずかであり、そのような歪みが組み立ての機能性や信頼性に問題を引き起こすことはありません。 ワーピングがより深刻な場合、コンポーネントのテストを開始したり、デバイスを使用し始める前に何か問題があるかどうかを見つけるのが難しいかもしれません。残念ながら、コンポーネントが組み立て施設に到着すると、フィクスチャでのテストを開始したり、平坦性を検査したりする立場にはおそらくありません。非常に明らかに歪んでいない限り、すぐにピックアンドプレースに入れられます。それらのコンポーネントをボードに組み込んだ後、ワーピングが処理や取り扱いの前後のどちらで発生したかを証明するのは困難になります。 簡単にまとめると、ワーピングは以下の状況で発生する可能性があります: コンポーネントの生産中、コンポーネントが生産や包装中に適切にスクリーニングされなかった場合 PCB組み立て中、 はんだ付けプロセスがコンポーネントに欠陥を生じさせる場合 PCBが歪む場合、それによって一部のコンポーネントにワーピングが発生する可能性がある 輸送中、何らかの機械的衝撃やショックがボードやコンポーネントに損傷を与える場合 コンポーネントのワーピングを引き起こす組み立て欠陥 コンポーネントの反りの影響は小さくて気づかないこともあれば、潜在的な電気的問題を引き起こすこともあります。繰り返しのサイクリングと反りがはんだ接合部を弱め、早期または断続的な故障を引き起こす最悪のケースがあると言えるでしょう。組み立て中にコンポーネントの反りを引き起こす要因には 熱サイクリング CTEの不一致 アウトガス があります。繰り返しのサイクリングによってコンポーネントの反りが発生する最も単純なケースは、繰り返しのサイクリングが原因です。 ボールグリッドアレイパッケージを持つ大型プロセッサーなど、反りの影響を受けやすい大きな表面積を持つコンポーネントで、これらの電気的問題が現れる場所の一つです。有機基板上のパッケージも熱サイクリングの影響を受けやすく、周囲のラミネートと比較してCTEの不一致があるため、反りを経験することがあります。 コンポーネントのパッケージと基板の間に大きな不一致がある場合、基板が反り、PCBとケーシングの間の距離が増加し、いくつかの可能性があります。場合によっては、はんだボールが「落ちて」PCBに低く留まり、コンポーネントに接続せずに開回路が生じるか、はんだが流れて他の接続をブリッジすることがあります。それ以外の場合、はんだボールは適切な温度で接続を行うために伸びます。回路は見えますが、接合部のはんだが薄くなり、時には奇妙な形をしており、時間が経つにつれて接合部が信頼性を失います。BGAパッド間のピッチが狭くなると、影響はさらに悪化します。 表面が下に反る場合、通常はリフロー中に角や端が沈むと、コンポーネントの下にはんだが多すぎる状態になります。はんだがパッドから押し出され、他のはんだパッドに橋渡しをして短絡することがよくあります。下の画像で見るように。 記事を読む
RF設計ソフトウェア 高周波基板用に最高のRF設計ソフトウェアを使用します 1 min Blog 高周波数とデジタルインターフェイスに対応する無線周波数システムの設計は難題であり、最適なRF設計ソフトウェアツールが必要です。高GHz帯のRFエンジニアリングは、最高のRF設計ソフトウェアを援用して、正確な基板トレース配線、レイヤスタック設計、および回路設計を保証します。Altium DesignerをRF設計プロセスに使用して、次のGHz帯システムを製造に移行します。 Altium Designer 回路設計機能、強力なPCBエディタ、 RFエンジニアリング専門家向けのシミュレーション機能を備えた統合回路基板設計アプリケーション。 多くの電子部品製造エンジニアはデジタル設計のコンセプトに精通していますが、 RF設計に特異な点についてはどうでしょうか。高周波で動作し、基板上のデジタルインターフェイスで動作するRFシステムでは、適切な手順が実行されない限り信号品質が低下するシグナルインテグリティの問題が、多数発生する可能性があります。最高のRF設計ソフトウェアを使用する設計者は、RFシステム用の最適な基板レイアウト技法に従うと同時に、最良のシミュレーションおよび分析機能によってシステムを評価することができます。GHz帯周波数に対応するRF基板を設計する必要がある時は、業界最高のデジタル、RF、および混在信号設計ソフトウェアである Altium Designerのような総合設計プログラムを使用します。 RFエンジニアリングにおける正確な回路設計 すべての新規の電子システムは回路設計として始まり、電子部品製造エンジニアはRFエンジニアリングのための強力な設計とシミュレーションのツールを必要とします。RF回路設計では、高周波数で動作でき、またシステムの構築、および実際のコンポーネントを使用して設計を評価できるシミュレーションが必要です。フィルタやマッチングネットワークなどの回路を経由した信号伝播を理解するには、システムレベルのデザインアプローチが必要です。すべてのソフトウェアツールがこれらのタスクに対応できるわけではなく、多くの設計者は、フィールドソルバーを回路設計エディタおよびSPICEシミュレーターと組合せてRF設計を作成せざるを得ません。 必ず、統合されたコンポーネントライブラリと基板サプライチェーンへの接続を備えた最適な回路設計ツールを使用してください。Altium Designerの回路図エディタには、 SPICEシミュレーションの標準コンポーネントモデルに対応する強力なSPICEシミュレーションエンジンが搭載されています。1つのプログラムですべてにアクセスできるため、高品質の電力コンバータを設計し、その設計を迅速かつ容易に検証できます。 混在信号の設計とシミュレーションのツールを備えたRF設計ソフトウェア Altium Designerには、 RF回路設計および分析に使用するシミュレーションモデルを使って、非常に多くの実際のコンポーネントにアクセスできる最高の回路図エディタが付属します。設計者は、 RF設計プロセスを効率化すると同時に、システムレベルのデザインと分析を支援できます。Altium 記事を読む
レングスチューニング 相対長チューニングとxSignals 1 min Guide Books 高速インターフェースは、一般的に差動ペアとしてルーティングされたシリアルバスや、高いクロックレートで動作する並列バスとして構築されます。これらのバスでは、信号群が要求されるクロッキングウィンドウ内で受信コンポーネントに到着できるように、バス内のトレースがマッチした長さである必要があります。この長さのマッチングは、クロッキング信号の長さと、バス上を移動する信号の立ち上がり時間によって制約されます。 例えば、DDR3/4メモリインターフェースでは:8ビットのデータのそれぞれには、関連するデータストローブと差動クロックがあります。データはストローブからキャプチャされるため、ストローブに関連するデータビットは、そのストローブビットに近い長さでマッチングされなければなりません。CSI-2のような他のプロトコルでは、カメラインターフェースに接続する複数の差動ペアが並列にルーティングされています。これらの差動ペアは、各ペア内でトレースがマッチしている必要があり、ペア同士も互いにマッチしている必要があります。 PCB設計ソフトウェアの長さ調整ツールを使用すると、これらの構造を非常に簡単に配置および調整できます。 長さ調整ツール Altium Designerには、PCBレイアウトに長さ調整セクションを適用するための2つのツールがあります: - インタラクティブ長さ調整 – 単一トラック用; - インタラクティブ差動ペア長さ調整 – 差動ペア用。 長さ調整には3つのパターンが利用可能です: アコーディオン、 トロンボーン、および ノコギリ波。 xSignalsを使用した長さ調整 長さ調整を開始する前に、特別なネットクラスを作成する必要があります。その後、これらを長さ調整ルールで使用できます。ネットクラスとxSignalsクラスの両方を長さ調整に使用できます。しかし、 記事を読む