Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Professional Training Courses & Certificates
Training Previews
On-Demand
Instructor-Led Trainings
大学・高専
Education Programs
Educator Center
Student Lab
Altium Education Curriculum
オンラインストア
Search Open
Search
Search Close
サインイン
デザインライブラリ
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
デザインライブラリ
Overview
All Content
Live Webinars
Filter
0 Selected
Content Type
0 Selected
全て
Software
0 Selected
全て
Clear
×
Clear
0 Selected
Content Type
全て
8
ビデオ
4
ホワイトペーパー
4
0 Selected
Software
全て
8
Altium Designer
5
Concord Pro
3
47
Videos
How To - Using File-Based Libraries in the New Components Panel
Thought Leadership
製造の準備:PCBパネル化ソフトウェア
製造業に従事している方や新製品を生産する予定がある方にとって、生産性が重要なキーワードです。産業革命以来、人時あたりの製品数を増やすことに焦点が当てられており、PCBも例外ではありません。新製品を市場に出す際、必要以上に注文に費用をかける理由は何でしょうか? PCB製造プロセスの生産性を向上させる方法の一つは、適切なパネライゼーションスキームを使用することです。適切なPCB設計ソフトウェアを持っていれば、パネライゼーションは比較的簡単なプロセスとなり、ボードごとのコストを削減できます。外部のCADプログラムをパネライゼーションに使用したり、デフォルトの長方形の配置を使用する代わりに、PCB製造に特化した優れたCADパッケージを使用することで、各パネルから最大限の効果を得ることができます。 パネライゼーションによる製造準備 パネライゼーションは、標準サイズの単一パネル上に複数のボードを配列するプロセスです。これは、1枚の大きなPCB基板上にボードのコピーを作成するようなものと考えてください。単一のパネルを組み立ておよび分離機械を通すことは、おおよそ固定費となり、製造業者は通常、パネルごとのPCB価格を見積もります。目標は、工具の制約を満たしながら、単一のパネル上に可能な限り多くのボードを配置することです。 製造、分離、および組み立てのためにパネライズされたボードを準備する方法の一つとして、パネライズされたPCBとPCB自体の両方に フィデューシャルマーカーを配置する必要があります。これらのマーカーはパターン認識マーカーとも呼ばれ、ピックアンドプレース機械がボードの向きを確認し、ボード上の異なる位置間の距離を測定するため、または指定された許容範囲を満たさないボードを拒否するために使用されます。 フィデューシャルマーカーは一般的に、ボードの対角線上の角とパネルの対角線上の角に配置する必要があります。測定のためです。3つ目のフィデューシャルマーカーは、向きを確認するために別の角に配置できます。これにより、ピックアンドプレース機械やその他の組み立て機械がパネルが正しい向きでロードされたかどうかを判断でき、自動組み立て機械はこれらのマーカーを使用して、コンポーネントを正しい位置と向きで取り付けることができます。 標準化された工具装置は、各パネルにサイズ制約を設けることもでき、ボード間の間隔を制約します。パネルの配置を計画したら、分離プロセスを考慮に入れ、ボード間に分離ツールのためのスペースを含める必要があります。ボードに使用される正確な工具処理は、主にその厚さと基板材料に依存します。 非常に薄い基板を扱っていて、大きな機械的ストレスに耐えられない場合、レーザーカッターやCNCマシンのルータービットを使用して、各パネルを簡単に切り出すことができます。パネルが非常に薄くて広い場合、ルータービットは通常、基板の中心付近のストレスを減らすために遅く動作し、実際にはスループットを減少させることがあります。 基板が厚くなったり、基板用の材料が頑丈なものを使用する場合、鋸を使用した手動または自動の切断プロセスでパネルから基板を分離することができます。一般的な方法の一つは、パネル内の各基板の周りにV字型の溝を配置し、ピザカッターに似た鋸を使用して、これらの溝に沿って切断することで基板を分離することです。 基板を分離する方法に関わらず、基板にフィデューシャルマーカーを簡単に配置し、工具用のスペースを提供できるPCB設計ソフトウェアパッケージが必要になります。パネル化の計画を立てる際には、基板がどのように分離され、パネル上で必要なクリアランスがどの程度かを確認するために、製造業者に連絡することが最善です。 ECADソフトウェアでのパネル化 一部のソフトウェアパッケージでは、CAD、パネライゼーション、 製造業者向け納品物、および設計検証ツールを異なるプログラムやモジュールに分けています。これにより、基板を一つのプログラムで設計し、別のプログラムでパネライズし、そして設計プログラムで基準マークや工具仕様を定義する必要があります。時間の無駄とはこのことです... 設計ソフトウェアが 部品表やパネライゼーション機能と別々の場合、プログラム間の切り替えに時間がかかります。設計をプログラム間で移動すると、レイアウトがパネライゼーションソフトウェアにインポートされる際にエラーが発生する可能性があります。さらに悪いことに、パネルを手動で描画する必要がある場合、正しい詳細を含めないとパネルの向きに曖昧さが残ります。 曲がった基板を扱っている場合や、同じパネルに異なる基板を配置したい場合、パネルを手動で描画して最適化するのにさらに時間がかかります。パネライゼーションユーティリティとPCBソフトウェア間でデータをやり取りすると、互換性のエラーが発生しやすくなり、時間の無駄になります。代わりに、これらのツールが組み込まれたPCB設計パッケージが必要です。パネライゼーション設計ツールでは、基板がどのように配置され、製造業者によってどのように分離されるかを指定できるようにする必要があります。 唯一、設計、製造データ生成、シミュレーション、およびサプライチェーン管理ツールを一つのパッケージに統合したPCB設計ソフトウェアは、 Altium Designer
適切なツールがPCBレイアウトの時間見積もりに役立ちます
PCB設計を計画するために正確に知る必要があるのは、PCBレイアウト時間の見積もりに役立つ適切なツールを持っていることです。 ALTIUM DESIGNER PCB設計ソフトウェアの中で最も正確な結果を提供します。 新しいプリント基板設計を探求する際には、レイアウトを完了するのにどれくらいの時間がかかるかを見積もることが有益です。これにより、生産とテストを適切にスケジュールし、設計のリリースをマーケティングやその他の関連プロジェクトと同期させることができます。PCBレイアウトの完成までの時間を正確に見積もるには、レイアウトの経験、設計要件の理解、およびコンポーネントの密度と利用可能なボードスペースに関する完全なデータが必要です。しかし、最も重要なのは、設計がどれくらいの時間を要するかを予測するのに役立つ設計ツールを必要とすることです。 これを行うには、PCB設計ツールのフルレンジが必要です。レイアウトに取り掛かる前でさえ、回路を作成しシミュレートするのに役立つ回路図ツールがあれば、後での設計のサプライズを最小限に抑えることができます。レイアウトに入ったら、操作が簡単で複数の配置オプションを提供するツールが必要になります。これにより、部品を一貫して配置し、整列させることができます。また、ルーティング時間を簡単に計算し、実行できるように、インテリジェントなトレースルーティング機能も必要です。最後に、予定された時間内に最終製造ファイルを作成できるように、自動化された出力機能が必要です。 始めから終わりまで、すべてをこなせる設計ツールのセットが必要です。良いニュースは、これらの機能をすべて備えた完全なツールスイートを提供するPCB設計システムがあるということです。それがAltium Designerです。 コンポーネント配置 PCBレイアウトツールは、レイアウトの準備を助けるべきです。Altium Designerは、ボードサイズとレイヤースタックアップを完全に制御できるため、開始前に利用可能なボードスペースの量を確認できます。Altium Designerでは、回路図からレイアウトへのパーツのクロスセレクト機能を使って、フロアプランニングが簡単です。 スキーマティックで論理的なグループに部品を簡単にグループ化して、どの部品がどこに必要になるかを正確に確認できます。部品の配置を始めると、Altium Designerは、設計のニーズに応じて部品を迅速に配置・整列させるためのさまざまな配置機能を提供します。 コンポーネント配置を直感的かつ簡単にするPCBレイアウトツール 回路基板上やその層内でどのような温度上昇が発生しても、設計プロセスと設計ルールはそれを考慮するべきです。レイヤーの管理、熱源、熱抵抗、ピン、コストはすべて、PCB製造の層を通過し、回路がプリント回路になるために必要です。Altium Designerの配置ツールは、コンポーネントの正確な配置計画と実行に必要な制御を提供します。 Altium Designerの異なるコンポーネント配置機能は、ボード上に部品を整然と迅速に配置し、完成の見積もりを支援するのに役立ちます。 Altium
IPCに準拠したフットプリントモデルの操作
エレクトロニクス業界は業界標準の恩恵を受けています。これらの標準により、選択したコンポーネントを設計間で再利用でき、仕様が一貫して、IPCに準拠した製造者が標準プロセスを使用して基板を構築できるという保証を設計者に与えます。これにより生産性が向上し、デバイスが確実に意図したように動作するようになります。 標準のIPC 7350シリーズ(具体的には、IPC 7351B)により、表面実装コンポーネントの領域パターンの一般的な物理設計パラメータが指定されます。この標準に適合させるには、さまざまなタイプのコンポーネントが特定のフットプリントを必要とします。製造業者はこの標準内で対処して、製品が品質の要件と信頼性の要件を満たし、再作業や破棄が確実に減るようにします。 PCBがIPC 7351B標準に準拠するとき、表面実装コンポーネントが標準化された領域の配置に準拠しない場合があります。コンポーネントを使用することはできますが、製造業者が特定のコンポーネントを操作するためにプロセスを適応させる必要があるので、彼らからの追加の設計コストを負担する必要がある可能性もあります。カスタマイズされた、独自のコンポーネントを操作している場合、コンポーネントをIPCに準拠するよう設計することは良いアイデアです。 IPC準拠のフットプリントを使用したコンポーネントの作成 全てのコンポーネントがIPCに準拠したフットプリントを使用しているわけではありません。幸いにも、最良のPCB設計ソフトウェアパッケージにはCADツールがあり、一部のシンプルな設計方法を適用する限り、これらのコンポーネントを操作することができます。例えば、領域のパッド間のピッチは標準トレース幅と違っており、これらの非準拠のコンポーネントを使用する場合は、設計ソフトでこの設定を変更する必要があります。 カスタムコンポーネントを使用するときに配置や配線の問題を避けようとするなら、手間を省いて直ちにIPCに準拠するコンポーネントのフットプリントを作成することができます。AltiumではIPC Compliant Footprint Wizardがアプリケーションの拡張機能として使用可能です。このウィザードではテンプレートを使用してIPCに準拠するコンポーネントのフットプリントを生成し、 手動でコンポーネントを作成するのに比べて、大幅に時間を節約します。 ウィザードにアクセスするには、新しいPCBライブラリファイルを作成する必要があります。これはスタンドアロンファイル、または既存のプロジェクトへの追加として作成することができます。この新規のウィンドウがアクティブな状態で、[Tool] メニューをクリックして [IPC Compliant Footprint Wizard] を選択します。さまざまなコンポーネントフットプリントを作成するオプションが表示されます。この例では、CQFPパッケージを使用します。
Thought Leadership
コンポーネントの選択を容易にするためのライブラリ検索機能
コンポーネントは、基板を機能させるのに不可欠な要素です。コンポーネントライブラリには、利用可能なコンポーネントに関する全ての情報が1つの場所に含まれているため、コンポーネントライブラリを使うことで、簡単にコンポーネントを基板に追加し、シミュレーションおよびルールチェック機能でコンポーネント情報を使うことができます。他の設計ソフトウェアパッケージの多くでは、これらの機能を別のプログラムに分離しています。または、コンポーネントを検索し調達情報にアクセスするために外部のサードパーティー製ツールを使う必要があります。 複数の独立したプログラムに頼るのでも、サードパーティーのサービスをワークフローに統合するのでもなく、設計およびコンポーネント選択ツールは1つの統合されたインターフェースに表示されるべきです。このようなツールを使えば、次の基板に必要なコンポーネントを簡単に検索および選択できる検索機能を使って広範なコンポーネントライブラリに簡単にアクセスできます。基板に必要な重要コンポーネントを検索するだけのために複数のプログラムを切り換える必要はありません。 Altium Designerのコンポーネントライブラリはコンポーネント検索および選択機能を備えているため、必要なコンポーネントを見つけ、基板に追加し、コンポーネント調達情報を部品表に含めるのは簡単です。設計の全ての側面が1つのプログラムに統合されているため、異なる機能の間で設計データを簡単にやり取りできます。ルール駆動型の設計エンジンと一貫性のあるデータ形式は、他の設計プログラムでは避けられないエラーを防ぎ、設計のあらゆる側面を追跡するのに役立ちます。 回路図へのコンポーネントの追加 基板を作成するには、最初に回路図を作成する必要があります。統合設計プラットフォームで設計する場合、回路図とレイアウト図の同期が維持されるようにその設計ツールは作られています。レイアウト図での変更は回路図に反映されます(逆も同様です)。このように重要な設計ドキュメントが 同期されるため、同じ設計変更を手作業で2度行う必要はありません。Altium Designerはこれらの作業を全て簡単にします。 コンポーネント選択は、回路図に必要なコンポーネントを検索することから始めます。必要なコンポーネントが見つかると、それらのコンポーネントを回路図に追加し、接続作業を開始できます。作業を進めるうちに、使用しているデバイスには別のコンポーネントの方がよりよい選択肢であることに気付く場合があります。その場合、代わりのコンポーネントを見つける必要があります。ここで、代わりのコンポーネントを見つけ、レイアウト図と回路図に簡単に追加するのに、コンポーネント検索および選択機能が役立ちます。 基板を製造に払い出す準備ができたら、基板の 部品表を作成します。手作業でこれを行う必要はありません。コンポーネントのリストを標準化された部品表にコンパイルし、各コンポーネントの調達情報をコンパイルできます。販売業者のWebサイトを検索し手作業でこの情報を追加する必要はありません。代わりに、回路図とレイアウト図に表示されたコンポーネントに基づいて設計ソフトウェアがこの情報を自動的にインポートします。 Altium Designerで開いた空の回路図にライブラリからコンポーネントを追加するのが次のステップです。外部の供給源から多数のコンポーネントライブラリをダウンロードした場合、コンポーネントにアクセスするにはそれらをインストールする必要があります。Altium Designerは画面の右側に[Libraries]タブを表示します。[Libraries…]ボタンをクリックするとインストール済みのライブラリが表示され、コンポーネントライブラリを追加できます。 [Libraries…]ボタンをクリックすると、以下のようなウィンドウが表示されます。複数のライブラリをインストールした後に、別のライブラリをプログラムに追加する必要がある場合、[Install…]ボタンをクリックすると、ハードディスク内を検索しAltium Designerに追加するライブラリを指定できます。1つのウィンドウから複数のライブラリを追加できることに注意します。 Altium Designerで提供しているライブラリビューワー 作業を進め、「Freescale Microcontroller
PCBと部品表におけるサーキットブレーカー
回路遮断器はすべてのシステムで必要とされるわけではありませんが、過電圧/高電流に対する保護や、電力サージから生じる可能性のある損傷に対して、一部の環境では主要な保護源となります。回路遮断器は住宅の回路保護での使用が最もよく知られていますが、回路保護が必要とされる任意の環境(電力システムや産業システムなど)で使用することができます。一部の回路遮断器はPCB上に取り付けることができますが、他のものは大きすぎて筐体内にパネル取り付けする必要があります。 これらのオプションのどちらを設計に選択すべきか?これらの回路遮断器を選択する方法と、組み立てでこれらを指定する方法について説明します。 PCB内の回路遮断器 PCBが高電流でのシステム障害から保護する必要がある敏感な要素を含む場合、PCBに回路遮断器を含める必要があるでしょう。回路保護は、製品に適用される EMC規制や業界標準の下でも必要とされる場合があり、そのような回路保護要件は回路遮断器を必要とするかもしれません。PCBに含めることができる回路遮断器の種類は多く、ACまたはDCの過電圧および/または突入電流から回路を保護します。 回路遮断器には4種類あります: 熱的 - 過電流状態での過度の加熱によって作動 磁気 - 電流によって生成される磁場によって作動 熱磁気 - 高電流でのバイメタルアームの曲がりによって作動 油圧磁気 - 磁力が減衰液中のバネに作用してブレーカーを作動させる 各種類のブレーカーは、時間経過に伴う異なる電流作動プロファイルと独自の機械的特性を持っています。油圧遅延のない純粋な磁気ブレーカーは、電流サージを遮断するためにソレノイドを使用し、4つのオプションの中で最も速いブレーカーです。 PCB取り付け対パネル取り付け
Pagination
First page
« First
Previous page
‹‹
ページ
16
現在のページ
17
ページ
18
ページ
19
ページ
20
ページ
21
Next page
››
Last page
Last »
💬
🙌
Need Help?
×
📞
1-800-544-4186
📞
1-858-864-1798
✉️
sales.na@altium.com
🛟
Support Center
📣
Ask Community
📞
Contact Us