Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
大学・高専
学生ラボ
教育者センター
Altium Education カリキュラム
Search Open
Search
Search Close
サインイン
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
Altiumのエキスパート
筆者について
最新の記事
パーキンソン病との闘いにスマート技術がどのように使用されているか
1 min
Thought Leadership
先週、私は、両親に会うためトロントに帰省しました。私の87歳の祖父は最近、認知症と診断され、運転免許証を取り上げられました。祖父が運転できなくなって家族は安心した一方、好きなように動けなくなった祖父はショックを受けていました。しかし、それは、ある日変わりました。祖父を迎えに行った日のことです。到着すると家に誰もいませんが、祖父の車はあります。祖父がUberを注文したのでした。アプリの中には、初期の退行性神経疾患の患者に機会を与えるソリューションになるものもありますが、これらの病気の治療を目的に作成された、さまざまな分野のスマートデバイスがあります。ここでは、ハイテク食卓用金物やウェアラブル電子機器が、パーキンソン病患者の病気の影響を軽減するのに、どのように役立つかを探求します。 現在、約 6万人の米国人 が毎年、パーキンソン病(PD)と診断されており、その数字には、まだ発見されていない場合は含まれません。しばしば退行性神経疾患は高齢者の疾患であると考えられますが、PDと診断された患者の4%は50歳以下です。IoTが急成長する時代、技術とヘルスケアが、PD患者の生活の質に大きな影響を与えるようになっています。 IBMやPfizerのような企業が、これに気づき 、患者データを追跡、測定する新しい方法を探しています。理想的には症状の治療に役立ち、病気全体に新しい洞察をもたらす、リアルタイムのデータを研究者や医師に提供したいと考えています。一方、パーキンソン病患者の支援を目的とし、他の病気にも適用できる、有望なデバイスが3つあります。 電気スプーンは、何の味なのかを脳に伝えることができる 電気スプーン 私たちのほとんどが、味覚を当たり前だと考えています。パーキンソン病の影響と比較して小さいと思えるかもしれませんが、味覚を失うことは、その人の生活の質に大きな影響を及ぼす可能性があります。2013年、シンガポール国立大学の Nimesha Ranasinghe のグループは、舌の味覚受容体をだまし、銀の電極を使用して塩味や甘味、酸味、苦味といった感覚を生成できることを示しました。電極は、舌の先に触れ、さまざまな交流電流や小さな温度変化を使って、受容体を刺激します。今日、Ranasingheや、 ロンドン大学 のグループなど、他の研究グループは、 スプーンの形式で この技術を応用し、パーキンソン病や認知症の患者の味覚を取り戻すのに役立てています。スマート台所用品には、 あまり実用的でない ものもありますが、この研究は印象が良好です。 Liftware 発売を楽しみにしているスプーンには、
記事を読む
NASAにより計画されている3Dプリント回路基板テクノロジーの使用方法
1 min
Thought Leadership
編集クレジット: Tony Craddock / Shutterstock.com 3Dプリントがどのように社会現象となったのか、注目していましたか? 今では、人々は可能なら何でも3Dプリントにしようとしているようです。もしかしたら、3D印刷の熱狂はモノのインターネットと重なり、そのうちにプリントされた スマートフォーク などというものが出現するのかもしれません。他の人は3Dプリントで作って使い捨てにできる 50の最高の製品 について記事を書いているようですが、私はNASAがどのように3Dプリントを活用しようとしているかについて紹介したいと思います。ここだけの話、NASAは宇宙船と回路を印刷しようとしています。NASAは、プリント回路をどのように、そしてなぜ使用するかを詳細に示す科学的ミッションを計画しています。また、NASAはその将来を現実化できる現行のテクノロジーのレビューも行っています。 NASAのミッションにおけるプリント回路の使用法 最後の開拓地である宇宙は極めて過酷な環境で、宇宙のかなたを探検するには尋常でない革新が必要となります。NASAは過去にも多くの 途方もないミッション を達成してきましたが、 宇宙旅行をさらに推進するには 、ミッションを完遂するため、さらに進歩した道具が必要となります。フレキシブル基板は、NASAが遠大な目標を達成するため検討しているテクノロジーの1つです。NASAの理論的な StANLE ミッションは、プリント回路がなぜ利点があるのか、どのようなものになるのかを示すため計画されたものです。 StANLEは、プリントされた宇宙船の可能性を示すために考えられたものです。私は「
記事を読む
宇宙用途でのフレキシブル回路の利点
1 min
Blog
時々、なぜ宇宙旅行が重要か質問されます。毎晩眠りにつくとき、私にはその答えは明白であるように思えます。私の枕は、NASAが開発した形状記憶フォームで作られています。宇宙探検に対するNASAの取り組みから、今日私たち全てが恩恵を受けている他の多くの 重要な発見や機器 が生まれています。フレキシブル回路も、元は航空宇宙産業向けに開発された有用な技術です。地球を回る飛行や地球から離れた飛行の場合、リジッドフレキシブル基板やフレキシブル基板には、従来のPCBに比べて長所がいくつかあります。軽量化や小型化、信頼性の向上、より革新的な設計などのため、フレキシブル回路は、無限の可能性を持つ選択肢になります。これらの利点の全てを際立たせる素材が、Kapton
®
です。 軽量で小型 宇宙探検で重量はあまり問題ではないと思うかもしれません。そもそも宇宙では全てに重量がありませんよね? あいにく、ロケットやその積み荷は、打ち上げの間にまだ重力を体験します。ものを地上から軌道まで運ぶのが、全プロセスで 最もエネルギーを必要とする部分 の1つです。フレキシブル回路は従来のPCBより 軽くて占有スペースが小さく 、航空宇宙分野に最適です。 フレキシブル回路は、通常の基板よりもともと軽量です。厚いリジッド基板を使用せず、薄い膜の上に実装されるからです。レイヤーを追加すると、基板軽量化の影響は大きくなります。最大 75%の軽量化 が可能です。大したことではないように思えるかもしれませんが、自分でロケット燃料の代金を払う必要があれば、1オンスでも重要です。 フレキシブル回路は、より軽いだけでなく、より小型でもあります。薄い膜が厚い基板よりスペースを取らないのは当然ですが、体積を節約できるのは主に柔軟性のためです。従来の基板は、一定の3Dスペースを必要としますが、フレキシブル基板は、隅や割れ目に押し込んだり折り重ねたりできます。また、曲げてユニークな3D図形を作り、未使用スペースを埋めることもできます。創造力が十分あれば、通常の基板と比べて最大 60%のスペース を節約できます。積み荷が大きければ、打ち上げロケットは大きく重くなるので、大きさは重要です。 打ち上げの間に余計な重量を運びたくありません。 信頼性
記事を読む
コンポーネントの配置と配線により、PCBをESDから保護する方法
1 min
Thought Leadership
私は、周りの人に言わせると、驚くべき神経質で特定の事物を整理するそうです。大学院で、机の私側の端と、隣の席の端から始まるサンプル容器と論文の山との間には境界線がありました。この傾向は、特にバスルームには およばなかった ため、同級生やボーイフレンドを困惑させましたが、PCBのコンポーネント配置の最適化では私を名人に仕立て上げてくれました。この傾向は、物事を整頓された状態に保つだけでなく、基板全体の 静電放電保護 も向上します。 よいコンポーネントの配置が明らかに意味するところは、基板上の 配線 に影響するということです。つまり、配線は、ESDの影響が、PCB全体や、影響を受けやすいコンポーネント、保護されていないコンポーネントにどのように広がるかを決定します。コンポーネントの配列を調整する場合、配線を改善し、PCBおよび影響を受けやすいICを最善の方法で保護するための基本的ガイドラインがあります。 可能な限り最も安全な場所へのコンポーネントの配置 ときとして、設計要件のため、静電気の影響を受けやすい全てのコンポーネントに対して 保護回路 を使用できないことがあります。その場合、それらのICの状況を改善するために実行できるステップがあります。 TVS保護回路とコネクター入力の間のトレースから、あるいはESDが予期されるその他の場所から、保護されていない回路を離します。この方法で、ESDパルスから生じる電磁場の急速な変化よって誘導される電流にコンポーネントをさらすリスクを最小限にできます。 コンポーネントの配置は、ICを保護配線に配置できない場合でも、ESDからICを保護できます。 保護配線上にあるデバイスでも、配置に関する事前の考慮から恩恵を受けることができます。影響を受けやすいコンポーネントは、保護配線上にある場合、基板の中央付近に配置する必要があります。これにより、保護回路の最高のパフォーマンスを得られるよう、 寄生インダクタンス のバランスを調整することができます。 配線長の最短化 トレースやワイヤが長いと、ちょっとしたアンテナの役割を果たします。意図しない放電を伝達したり受けたりする可能性があります。ESDパルスがある場合、それらは火花から「出力」を受け取り、配線長全体に伝達します。 配線長を最小にする最も簡単な最初のステップの1つは、全てのコンポーネントを、距離が近い相互接続を多用して配置することです。これにより、配線長を最小にし、うまくすれば相互接続する線の数も最小にできます。整理名人は、類似の要素をまとめる必要があることを知っています。
記事を読む
設計者または製造業者はPCB製造のあらゆる側面を指定するべきか?
1 min
Blog
長年計画していた中国への旅行が、ついに実現しました。フライトも半ばにさしかかった頃、突然、休暇の興奮は不安に変わりました。私は PCB設計者ですが、実装の間に重大な基板の誤りがあったかもしれない、と気付いたのです。そのリフロープロファイルを指定しなかったことを後悔していました。その反面、再度、それを指定することを後悔していたかもしれません。基板の誤りは全て、このフライトに搭乗する数日前に起こり、適切な計画があれば、この不安を避けることができたのです。PCBを設計、製造する際に使用される一般的なテクニックや原則は2つあります。1つは、基板の製造や実装の全ての側面を指定することによって、PCB設計の完全な所有権を得ることです。もう1つは、製造や実装のプロセスの一部を指定することを、契約製造業者に許可することです。どちらのオプションにも、適切な時と場所があります。異なる状況で、どちらの方が適切か考えましょう。 制御方法を選択するのは、いつか? 通常、基板の設計のあらゆる側面を指定する方が、より安全で優れたオプションです。設計パッケージ全体を制御すると、 PCBの製造場所やPCB実装の品質について、企業には最大の自由と柔軟性が与えられます。生産を拡大しつつある場合や、オフショアのコスト削減を目指している場合、基板の製造業者や実装業者の変更は、よくあることです。自身の材料やプロセスを選択する自由を契約製造業者(CM)に与えると、PCBアセンブリ(PCBA)の移転は、より困難になるでしょう。新しい実装業者でできた製品が、最初の実装業者とは異なる可能性が高いからです。これによって、休暇中に不安になることはないかもしれませんが、それに付随する認証の問題では、不安になります。多くの場合、基板が変わると、 その製品に関連した認証は、再度確認する必要があります 。これにはコストがかかり、製品の発売が遅れる場合があります。 そうすると、基板を製造し実装する方法を完全に指定するのが、常に最適な方法であると思われるでしょう。しかし、適切な基板材料の選択、適切なフラックスの決定、リフロープロファイルやはんだペーストマスクの調整、 PCBの面付けなどは、時間がかかり困難な場合があります。これらの要素のために、上で説明した利点が損なわれるシナリオが、いくつかあります。PCBAの完全な所有権を得るべきシナリオと、得るべきでないシナリオについて検討しましょう。 この景色を見に行くときに、PCBの仕様について考えたいと本当に思いますか? UL認証取得のための設計 UL認証 に応募するときは、コストのかかる遅延や予想外の経費を避けるため、 PCBAのあらゆる側面を完全に指定することが重要です。応募した経験がある人間は誰もが、UL認証の取得は、困難で時間のかかるプロセスだと言うでしょう。しばしば、ULに合格するには、製品に一連のテストを実施する必要があります。 製造業者が設計の材料を選択できるようにする と、合格に必要な仕様に従わずに、これらのテストで不合格になる場合があります。製品の安全レベルに応じて、認証は、完了するのに数か月かかる場合があります。ことによると、製品が最終的に合格する前に、何回かの繰り返しが必要になります。この場合、 PCB設計者の実際の唯一のオプションは、どの安全仕様を満たす必要があるかを学び、これを使って、PCB設計の(全てではないにしても)ほとんどの側面を決定することです。例えば、ULテストでよく問題となるのは可燃性(UL94)です。しばしば、PCB基材に適切な誘電体を指定することが、これらの用途に重要になります。PCB製造業者に、任意の繊維ガラス材料を選択する自由を与えると、ULテストサイクルが増えることになるでしょう。最初から設計仕様の概要をまとめ、認証の間の問題を避けるのが、賢明です。どれだけ指定するかを決めるのが難しい場合もあります。どちらとも言えない場合を見ましょう。 インピーダンスとユーザー入力の制御のための設計 IoT市場向けのPCBを設計 しているとき、概要を示す仕様の数について、判断が必要になります。ほとんどの
記事を読む
設計にフェライトビーズを使用してEMIを低減する方法
1 min
Blog
PCB設計者
電気技術者
「ロケット科学みたいに、さっぱりわからない」というのはよく使われてきた言い回しです。小さなJimmyは九九までロケット科学のようだと言っていました。今日では「ロケット科学」を「電磁気干渉」と置き換えるべきでしょう。EMIは多くの人々がぼんやりとしか理解していないものの1つです。この理由から、私は 正しい接地方法、 AC/DC回路、 高速配線、 差動ペア配線などについて記事を書いてきました。順番から、次に書くべきなのはフェライトビーズを使用してEMIを低減する方法でしょう。フェライトを使うのは少々面倒なので、まず その背後にある理論を理解することが重要です。ほとんどの電子部品は本質的にプラグアンドプレイです。しかし、フェライトはシステム内に設計して組み入れる必要があります。理論を理解すれば、LCフィルター、GNDプレーンと電源プレーンの分離、ソースのノイズのフィルタリングなどを実践できるようになります。 フェライトのLCフィルター 設計者は多くの場合、フェライトビーズのことをローパスフィルターと考えようとします。これらは確かに高周波をブロックしますが、特定の帯域しかブロックしません。それより上の帯域では、固有の容量が優先します。ビーズ自体はローパスフィルターではありませんが、バイパスコンデンサーと組み合わせてローパスフィルターにすることができます。この場合、本質的にLC(コイルとコンデンサー)フィルターとして機能します。フェライトビーズをこのように使用するときに大きな問題の1つは、LC共鳴です。 重要な点を先に述べると、回路の電源ラインにフェライトビーズを使用する場合、バイパスコンデンサーが必要です。低い周波数ではフェライトビーズはコイルとして機能し、電流の変化に抵抗します。すなわち、集積回路が電流のスパイクを引き出そうとすると、ビーズはそのピークに抵抗し、回路の動作の妨げとなります。バイパスコンデンサーは電荷を保存し、これらの電源スパイクを供給するために必要です。またバイパスコンデンサーは一般的にも良いやり方です。 コンデンサーとフェライトを設置したら、高周波をフィルタリングして除去できます。フェライトビーズには、LCフィルターに使用される通常のコイルと比較して、いくつかの利点があります。フェライトビーズは低い周波数で ロールオフが急速です。また、固有の抵抗が存在するため、発生の可能性がある共鳴を減衰させるため役立ちます。多少の減衰能力はあっても、LC共鳴は依然として発生する可能性があります。 大きなコンデンサーを使用するときは、特にリスクが大きくなります。共鳴が発生した場合、 最大10dBのゲインを招くことがあります。フィルターの設計では共鳴を避けるよう注意してください。 フェライトビーズとバイパスコンデンサーを使用して信号をフィルタリング デジアナ混在信号のGND/電源プレーンの分離 EMIが回路内を伝搬する主な手段の1つは、GNDおよび電源プレーンです。混在信号回路では、単一のGND/電源プレーンがアナログ信号とデジタル信号の両方に使用されるため、特にこれが一般的となります。このため、 GNDと電源のプレーンを別にするのが最良ですが、GNDは依然として同じ相対電圧に参照される必要があります。これらの問題から極めて困難な課題が生み出されますが、この課題を解決するためにフェライトビーズが役立ちます。 フェライトビーズは、 アナログとデジタルのGND/電源プレーンを接続するために使用できます。この方法により、両方のプレーンは依然として同じ電圧に参照されますが、互いに絶縁されるようになります。ビーズは、通常ならプレーンから別のプレーンへ直接転送される ノイズをブロックできます。
記事を読む
Pagination
First page
« First
Previous page
‹ Previous
ページ
41
ページ
42
ページ
43
現在のページ
44
ページ
45
ページ
46
Next page
Next ›
Last page
Last »