筆者について

Zachariah Peterson

Zachariah Petersonは、学界と産業界に広範な技術的経歴を持っています。PCB業界で働く前は、ポートランド州立大学で教鞭をとっていました。化学吸着ガスセンサーの研究で物理学修士号、ランダムレーザー理論と安定性に関する研究で応用物理学博士号を取得しました。科学研究の経歴は、ナノ粒子レーザー、電子および光電子半導体デバイス、環境システム、財務分析など多岐に渡っています。彼の研究成果は、いくつかの論文審査のある専門誌や会議議事録に掲載されています。また、さまざまな企業を対象に、PCB設計に関する技術系ブログ記事を何百も書いています。Zachariahは、PCB業界の他の企業と協力し、設計、および研究サービスを提供しています。IEEE Photonics Society、およびアメリカ物理学会の会員でもあります。

最新の記事

高速PCB設計においては、グラウンドプレーンのギャップを横切ってはいけません 高速PCB設計においては、グラウンドプレーンのギャップを横切ってはいけません 1 min Blog PCB設計者 PCB設計者 PCB設計者 電子機器やPCBのフォーラムをよく閲覧していますが、同じ質問が何度も何度もされています。なぜグラウンドプレーンの割れ目を越えてトレースを引いてはいけないのか?この質問は、ハイスピードPCB設計にちょうど足を踏み入れたばかりのプロのデザイナーからメーカーまで、誰もが尋ねます。プロの信号完全性エンジニアにとって、答えは明らかでしょう。 長年のPCBレイアウトエンジニアであろうと、たまにデザインする人であろうと、この質問への答えを理解することは役立ちます。答えは常に絶対的な表現で枠付けられます。PCB設計の質問に絶対的な用語で答えることはあまり好きではありませんが、この場合は答えが明確です:グラウンドプレーンの隙間を越えて信号をルーティングしてはいけません。さらに詳しく掘り下げて、なぜグラウンドプレーンの隙間を越えてトレースを引いてはいけないのか理解しましょう。 グラウンドプレーンの隙間:低速および高速設計 この質問に答えるには、DC、低速、高速での信号の振る舞いを考慮する必要があります。これは、各タイプの信号がこの基準面で異なるリターンパスを誘導するためです。信号がたどるリターンパスは、基板内で生成されるEMIに及ぼす重要な影響、および特定の回路がEMIに対してどれほど感受性を持つかについて、いくつか重要な影響を及ぼします。PCB内でリターンパスがどのように形成されるかをよりよく理解するために、 この記事と、Francesco Podericoからの 役立つガイドをご覧ください。 PCB内でリターン電流がどのように形成されるかを理解すれば、それがEMIと信号の整合性にどのように影響するかを見るのは簡単です。ここで重要な理由です—そしてそれはグラウンドプレーンのギャップを越えるルーティングに関連しています。ボード内のリターン電流によって形成されるループは、2つの重要な振る舞いを決定します: EMIの感受性。回路内の供給電流とリターン電流によって作られるループは、ボードのEMIに対する感受性を決定します。大きな電流ループを持つ回路は、より大きな寄生インダクタンスを持ち、放射されるEMIに対してより感受性が高くなります。 スイッチング信号におけるリンギング。回路内の寄生インダクタンスは、信号がレベル間で切り替わる際の 過渡応答の減衰レベルを決定します。回路内の寄生キャパシタンスと併せて考えると、これら二つの量は過渡応答の自然周波数と減衰振動周波数を決定します。 DC、低速、高速信号を詳しく見てみましょう: DC電圧/電流 基板がDC電源で動作する場合、リターン電流は信号トレースの直下ではなく、供給リターンポイントに直線的に戻るため、リターンパスを実質的に制御することはできません。これは、大きな寄生インダクタンスのために基板がEMIに弱くなることを意味します。電源が切り替わらないため、過渡振動がないと思われがちですが、マイクロストリップトレースがグラウンドプレーンのギャップを越えてルーティングされている場合でも、EMIの感受性の問題は依然として存在します。DCループのインダクタンスをできるだけ低く保つべきであり、ループインダクタンスを減らすためには、グラウンドプレーンのギャップを越えるルーティングを避けるのが最善です。 低速信号 DC信号と同様に、リターンパスは回路のループインダクタンスを決定し、これが EMI感受性および過渡応答の減衰を決定します。ループインダクタンスが大きい場合、減衰率は低くなり、DC信号の場合と同様に、グラウンドプレーンのギャップを越えてルーティングするとループインダクタンスが増加し、信号の整合性、電力の整合性、およびEMIに影響を与えます。 残念ながら、低速信号はある種の遺物であり、TTL以上の速度のロジックを使用するすべてのボードは高速回路として振る舞います。低速信号(一般に数十nsの立ち上がり時間とそれより遅い)では、特定の回路のリンギング振幅は通常、低く抑えられていたため、気づかれないことが多かったです。したがって、信号がグラウンドプレーンのギャップを越えてルーティングされない限り、ループインダクタンスは通常、激しいリンギング、EMI感受性、および関連する電力整合性の問題を防ぐのに十分に低かったです(下記参照)。 高速信号 低速で動作するように設計された基板に高速信号を流すと、与えられた回路ループのインダクタンスに対して、リンギングの振幅が大きくなります。これは、基板内のループインダクタンスをできるだけ小さく保つ必要性を再び示しています。目標は、与えられた相互接続においてリンギングの振幅を減少させるために、できるだけ多くの減衰を提供することです。再び、グラウンドプレーンのギャップを越えてルーティングすることで、ループインダクタンスの増加を避けることができます。さらに、高速回路を運ぶ信号層の下にグラウンドプレーンを配置することで、相互接続全体を通じてループインダクタンスができるだけ低くなるようにする必要があります。 記事を読む
回路設計における過渡信号解析のためのツール 回路設計における過渡信号解析のためのツール 1 min Thought Leadership 適切なシミュレータを使用すれば、これらの回路で過渡信号解析を行うことができます。 私はまだ最初の微分方程式のクラスを覚えています。最初に議論されたトピックの一つが、多くの異なる物理システムで発生する減衰振動回路と過渡信号応答でした。PCB内のインターコネクトや電源レールでの過渡応答は、ビットエラー、タイミングジッター、および他の信号整合性の問題の原因となります。過渡信号解析を行うことで、完璧な回路を設計する道のりでどの設計ステップを踏むべきかを決定できます。 単純な回路での過渡信号解析は、手作業で調べて処理することができ、時間の関数として過渡応答をプロットすることができます。より複雑な回路は、手作業で分析するのが難しい場合があります。代わりに、シミュレータを使用して回路設計中に時間領域の過渡信号解析を行うことができます。適切な設計ソフトウェアを使用すれば、コーディングスキルも必要ありません。 回路設計における過渡現象の定義 正式には、過渡現象は、一連の結合された一次線形または非線形微分方程式(自律的であるか非自律的であるかにかかわらず)として記述できる回路で発生する可能性があります。過渡応答はいくつかの方法で決定できます。私の意見では、ポアンカレ・ベンディクソンの定理を使用して、任意の結合方程式セットに対して手作業で簡単に処理できるため、過渡応答のタイプと存在を簡単に判断できます。このような操作が得意でない場合でも心配はいりません。SPICEベースの回路シミュレーターを使用して、時間領域で過渡挙動を調べることができます。 フィードバックのない時間不変回路の過渡応答は、3つの領域のいずれかに分類されます: 過減衰:振動のない遅い減衰応答 臨界減衰:振動なしで可能な限り速い減衰応答 減衰振動:減衰し、振動する応答 これらの応答は、時間領域シミュレーションの出力で簡単に確認できます。SPICEシミュレーターを使用して、回路図から直接過渡信号分析を実行できます。 時間領域での過渡信号分析のためのツール 回路の挙動を調べ、過渡信号解析を探求する最も簡単な方法は、時間領域シミュレーションを使用することです。このタイプのシミュレーションは、ニュートン・ラフソン法または数値積分法を使用して、時間領域で回路のキルヒホッフの法則を解くことにより行われます。これは、シミュレートされる回路の形式に依存します。これらおよびその他の方法は、SPICEベースのシミュレータに統合されており、明示的に呼び出す必要はありません。過渡解析のもう一つの方法は、回路のラプラス変換を取り、回路の極と零点を特定することです。 回路シミュレーションの観点からは、回路図から直接過渡信号解析シミュレーションを実行できます。これには、回路の挙動の2つの側面を考慮する必要があります: 駆動信号。これは、過渡応答を引き起こす入力電圧/電流レベルの変化を定義します。これには、2つの信号レベル間の変化(例えば、スイッチングデジタル信号)、電流入力信号レベルのドロップまたはスパイク、または駆動信号の任意の変化が含まれる場合があります。正弦波信号や任意の周期波形で駆動することも考慮できます。また、信号が2つのレベル間で切り替わる際の 有限立ち上がり時間も考慮できます。 初期条件。これは、駆動信号が変動する瞬間または駆動波形がオンになった瞬間の回路の状態を定義します。これは、時刻 t = 0 で、回路が初めて定常状態(つまり、回路内に以前の過渡応答がなかった)にあったと仮定します。初期条件が指定されていない場合、t 記事を読む
エンジニアとしての選択:自作するか、購入するか? エンジニアとしての選択:自作するか、購入するか? 1 min Blog 既製品のSBCを購入することに躊躇していますか?適切なモジュラーハードウェア設計ツールを使えば、迅速に構築できます 新しいプロジェクトに取り組むことほど楽しいことはありません。それが起業の冒険であれ、個人的な楽しみであれ。組み込みシステムのハードウェアプロジェクトに取り組むエンジニアとして、システムのどの重要な部分を自分で構築し、どの部分を購入するかという重大な決断を迫られる時が来ます。「構築するか購入するか」というジレンマはハードウェアコミュニティを切り裂いていますが、それはハードウェアに限ったことではありません。 この種の決断は簡単なものではなく、この質問に対する一般的な答えはありません。プロジェクトに間違った決断をすると、ユーザーやビジネスオーナーに時間とお金を費やさせることになります。構築するか購入するかを決定することは、コスト、時間、能力を慎重に比較検討する必要がある複雑な問題です。 製品の能力対スキル、経験、コスト エンジニアリングチームのスキルと経験は、次の製品をサポートするためにゼロから製造するか、既製のボードを購入するかの決定に大きな影響を与えます。チームが特定のドメインにおいてより多くの知識を持っているほど、成功する製造アプローチに乗り出す可能性は高くなります。一方で、特定のプロジェクトドメインにおいて知識と経験が少ないチームは、ゼロから新しい製品を生産するまでに時間がかかる可能性が高いです。この場合、既製のソリューションを購入する道を選ぶことが最もありそうです。 購入と製造の間で決定する際に考慮すべき重要な点のすべての中で、コストと必要な能力のバランスを取ることはおそらく最も重要です。自社製品を作成するビジネスにとって、コストは最終的な決定要因かもしれません。組織がクライアントのために製品を設計している場合、能力、カスタマイズ、コスト、および顧客の要件への適合性の間のトレードオフを示すオプションをクライアントに提示する必要があります。 コストの内訳 購入または製造に関わる総コストのトレードオフを理解することは、いくつかの段階を含む複雑なプロセスですが、利益を確保するためには重要なタスクです。完全にゼロから組み込みシステム用のカスタムボードを製造することは、以下のようないくつかのコストを発生させます: 開発費用:これはPCB設計を超えたものです。これにはソフトウェア開発(ファームウェア、オペレーティングシステム、BSP、ブートローダーなど)、機械設計、オプション機能、 テストと検証(性能テスト、認証、環境テスト、基板の信頼性テスト、ソフトウェアテスト、熱テストなど)、およびドキュメントが含まれます。ゼロから何かを設計して構築する予定の場合は、希望する開発プラットフォームを使用するためのライセンス料も支払う必要があります。 製造費用:これにはPCB製造、組み立て、工具、部品、および送料が含まれます。 長期費用:組み込みシステム用の独自のコードを開発する予定の場合、カスタムボードは定期的にソフトウェアアップデートが必要になることがあり、バグを修正する必要があります。これらの継続的なソフトウェアメンテナンス費用は、既に広範な組み込みソフトウェア設計の経験がある場合でない限り、予測が難しい場合があります。 ビルドルートと比較して、既製のソリューションを選択することは、開発費、初期段階の部品費、製造費の大部分、およびソフトウェアメンテナンス費を間違いなく節約できます。これはビルドオプションが選択肢から外れることを意味しますか?それは本当にあなたのアプリケーション、既製ソリューションのコスト、および生産する必要がある量によります。 ボリューム 量はコストと密接に関連しています。製造よりも購入を推奨するエンジニアは、この点に焦点を当てがちです。なぜなら、これらの人々はスタートアップや趣味の人よりもはるかに大量の製品を扱う傾向があるからです。あなたの目標が低ボリューム――数十、数百、あるいは数千単位である場合――購入する方がおそらく最良の選択です。数量が多くなるにつれて、製造ルートがより魅力的になります。 購入と製造時の利益性と製造ボリューム 時間とともに単位数が増加するにつれて、「製造」オプションが利益を生み出し始めるのは、既製品の製造者と独占契約を確保できる場合のみです。一度自分の組み込みシステムボードを製造し、テスト体制を通過したら、再建する必要はありません。すぐに大量注文を行い、上記のグラフに示されている交差点に近づくことができます。 カスタマイズ性 オフ・ザ・シェルフの製品を購入して組み込みシステムを動かす場合、見たままが手に入るものです。オープンハードウェアプラットフォーム(例えば、ArduinoやRaspberry Pi)の電子回路図をダウンロードして、基板を完全に再設計する予定でない限り、製品の性能は基板上のコンポーネントによって制限されます。 記事を読む
マイクロ波およびミリ波周波数におけるRFアンプのインピーダンス整合 マイクロ波およびミリ波周波数におけるRFパワーアンプのインピーダンス整合 1 min Thought Leadership MarketWatchによると、RFアンプの全体市場は2023年に270億ドルを超えると予想されています。では、これらのRFアンプはどこで使用されることが予想されているのでしょうか?5Gや一般的なセルラーネットワークの拡大により、予想される成長の大きな部分を占めることができます。PCBデザイナーにとって、特に高出力アンプの場合、RFアンプのインピーダンスマッチングは重要な設計ポイントになります。 大信号RFアンプのインピーダンスマッチング RF電力整合性に関わる人々は、特にパルスRFパワーアンプを扱う場合、アンプの出力を通じて過渡信号を抑制するためにモバイルデバイスに良好な電圧レギュレータが必要であることをよく知っているでしょう。RF設計に取り組み始めるかもしれない信号整合性に関わる人々は、RF回路を分析し、適切なインピーダンスマッチングを決定する際に、低信号レベルでSパラメータを使用することに慣れているかもしれません。Sパラメータの使用は、これらのアンプが非線形領域で動作しているため、Class ABおよびClass C RFアンプ設計には適していません。 低信号レベルでの電力伝送(つまり、線形領域において)に関しては、負荷インピーダンスが アンプの出力インピーダンスの複素共役に一致している場合に最大の電力伝送が保証されます。しかし、電力アンプ(通常、RF送信セクションに配置される)は、意図的なインピーダンスの不一致がある場合に、定格出力電力でより高い利得と効率を提供するかもしれません。 高出力で動作する場合、アンプの出力インピーダンス/負荷インピーダンスの一致/不一致が、負荷への最大電力伝送を生み出すものは、所望の周波数で最大効率を生み出す一致/不一致と一致しない場合があります(これは抵抗成分について確かに当てはまります)。では、最適な性能を確認するために、負荷における正しい一致したインピーダンスをどのように決定できるでしょうか?ソースによって見られるインピーダンスは、アンプの入力および出力電力レベルに依存するため、 アンプの出力によって見られる適切なインピーダンスを決定するためには、負荷プル分析を使用する必要があります。その後、この値に負荷のインピーダンスを一致させる必要があります。 シミュレータとスミスチャートを使用して、ロードプル解析を行う比較的簡単な方法があります。この方法は、特定の入力電力で、大量の負荷インピーダンス値(インピーダンスは抵抗とリアクタンスの合計であることを忘れないでください)を反復して通過させることです。次に、負荷抵抗とリアクタンスの各組み合わせに対して出力電流/電圧をプローブし、これによりゲインと効率も計算できます。その後、特定の入力電力での負荷インピーダンスの関数として出力電力の輪郭をプロットします。 これは以下のスミスチャートで示されています:各輪郭は、特定の出力電力(緑)と効率(青)を生成する抵抗とリアクタンスの値のセットを示しています。赤い輪郭は、これら2つの曲線のセットが重なる領域を示しています。輪郭が交差する特定の出力電力において、出力電力と効率の間のトレードオフを決定できます。異なる入力電力では、異なるセットの輪郭が生成されることに注意してください。 RFアンプのインピーダンスマッチングに関するロードプル解析の結果を示した例のスミスチャート [ ソース] 負荷プル結果から決定したリアクタンスと抵抗の組み合わせは、負荷インピーダンスを設定するためにどのマッチングネットワークを使用すべきかを教えてくれます。その後、テストクーポンを使用したベクトルネットワークアナライザーの測定でこれを確認できます。高周波でのマッチングネットワークの振る舞いに注意してください。自己共振に加えて(下記参照)、マッチングネットワークの帯域幅が FMCWチャープレーダーに対していくつかの問題を引き起こす可能性があります。77 GHzで、チャープ範囲が4 GHzに達することができるので、帯域幅は73から81 GHzまで比較的フラットであるべきです。 記事を読む
PCBにおける冷却ファンの電気ノイズ低減 PCBにおける冷却ファンの電気ノイズ低減 1 min Blog 電気技術者 電気技術者 電気技術者 PCやラップトップを開けて、そのファンやヒートシンクをじっくりと見たことがない人はいないでしょう。高速コンポーネント、高周波コンポーネント、または電力コンポーネントを扱っている場合、これらのコンポーネントから熱を取り除くための冷却戦略を考える必要があります。蒸発冷却ユニットを設置するか、水冷システムを構築するという核オプションを使用したくない場合は、冷却ファンを使用すると、最小の形状で最良の結果を得ることができます。対流熱伝達を助けるために、ヒートシンクにファンを追加することは良い考えです。 ファンの電気ノイズと放射EMI システムを冷却するためにどの方法を使用するにしても、または冷却システムを構築している場合でも、ファンを駆動するために使用される方法に応じて、特定のEMI/EMCの点を考慮する必要があります。 AC駆動 AC駆動ファンは、周波数制御なしでは速度制御ができないため、コンパクトなシステムではあまり使用されません。また、これらのシステムは一般的に高AC電圧で動作するため、工業システムで見られることが多いです。これらのファンは、基本周波数および高次高調波で顕著な伝導EMI(共通モードおよび差動モード)を発生させ、これが電源/グラウンド線を通じて伝播します。これは通常、 共通モードフィルタリング(LCネットワーク)に続いて差動フィルタリング(別のLCネットワーク)、そして直列のRCフィルターで除去できます。 DC駆動 DCファンは電気的にノイズがないように見えるかもしれませんが、音響的および電気的ノイズを発生します。異なるタイプのファンは、それぞれ独自のEMIを発生させ、 EMCテストの合格を困難にします。DCモーターを駆動しても、ローターを引き寄せたり反発させたりするために使用される回転する磁石のおかげでEMIを発生させます。これは、整流時に強いスイッチングノイズを生じます。DCファンから発生するEMIは、通常、ファンの電源リード内の伝導EMIに限定されます(2線式DCファンの場合)。このファンの電気ノイズは通常、共通グラウンドに注入され、ファンを駆動する任意のアンプの出力で再現されます。 シンプルな単軸DC冷却ファン これは、DCファンが放射されるEMI(電磁干渉)を発生させないという意味ではありませんが、放射されるEMIは、永久磁石とステータ巻線からの未封じ込め磁場(UMF)により、回転速度と同じ周波数になります。UMFはほとんどのファンにある程度存在しますが、UMFに対処する最初のステップはメーカーの責任です。一部のメーカーは、少なくとも2つの取り付け面でUMFを抑制するために、ファンに薄い鋼のエンクロージャを設置します。これは、放射されるEMIがファンの向きに強く依存することを意味します。 UMFからの放射されるEMIは、近くの高インダクタンス回路に低周波のリップル電流を誘導することがあります。一般に、大きなファンは駆動のためにより強い磁場を必要とするため、与えられた回転速度でより強いEMIを示します。しかし、数千RPMの回転速度でさえ、この放射されるEMIの周波数は数百Hzの範囲内にしかなりません。 PWM駆動 PWM駆動ファンは、デューティサイクルとPWM信号を変化させることで速度制御を提供します。PWM駆動では、 スイッチングMOSFETや他のデューティサイクルが変化する回路を扱っています。速度制御は、適切なデューティサイクルとパルス周波数を設定することで提供されることに注意してください。これは、非常に低いパルス周波数の極端な場合、PWM信号が低い間にファンが停止するまで遅くなる可能性があるため、実際にはかなり重要です。PWM信号が非常に速い(高周波)場合、ファンを速くしすぎようとすると、エイリアシング効果による興味深いノイズが聞こえます。 PWMで駆動されるファンの場合、ほとんどのPWMドライバーは、MHz範囲に達する高周波で共通モードノイズを発生させます。PWMで駆動される誘導モーターは、導電性EMIとして電源線を通じて近くの回路に共通モードノイズを誘導することがあり、これはEMC評価に影響を与える可能性があります。このタイプのファン駆動は、速度制御が必要なコンピューターでより一般的です。この場合、ファンが安定した速度を維持するために温度制御および速度調整回路の使用が必要であり、コントローラーが必要に応じてデューティサイクルを増減できるようにする必要があることに注意してください。 シンプルな単軸DC冷却ファン PWM回路自体もオーバーシュート/リンギングによって伝導EMIを発生させることに注意してください。これは平滑化またはフィルタリングされるべきですが、バイパスコンデンサや フェライトビーズをファンの入力に追加する前に、ファンメーカーのガイドラインを確認するべきです。この問題に対処するための推奨事項には、LCフィルターの構築、リンギング信号を除去するためのバンドストップフィルター、出力にRCフィルターを使用することなどが含まれているのを見たことがあります。いずれにせよ、フィルタリング戦略がメーカーの推奨事項を満たしていることを確認してください。 PWM信号の立ち上がり時間が速い場合、スイッチング信号が近くの回路にクロストークを誘発するスイッチングモード電源で見られるような類似の問題が発生することがあります。大型ファンを駆動するために高電流PWM信号を使用している場合、PWM信号のスイッチング動作が近くのデジタル回路に不随意のスイッチングを引き起こすことがあります。これは、PWMパルス列の周波数やデューティサイクルに関係なく発生します。この時点で、PWM回路に 記事を読む
基板レイアウト再利用時のコンポーネントライブラリエラーの解決 基板レイアウト再利用時のコンポーネントライブラリエラーの解決 1 min Thought Leadership 適切なPCBデザインパッケージを利用すると こうした古い携帯電話のレイアウトを再利用することもできます 最近、新しいパソコンを購入しました。古いハードドライブのデータが「魔法にかかったように」壊れはじめたせいです。新しいパソコンに入り込んでデータを移し替えると、昔のデータを再利用できなくなるのではないかと不安になりました。テキストファイルや画像のような単純なものなら、問題はありません。ファイルをすぐに開き直して再利用できます。PCB設計データを利用すれば、古いレイアウトを新しいプロジェクトで当たり前のように再利用したくなるかもしれません。場合によっては、地球の反対側のユーザーと設計を共有し、プロジェクト内のすべてのデータにアクセスできるようにしたいと考える可能性もあります。 この場合、 Altium Designerの新しいバージョンで以前の設計データを利用できるようにするために、注意すべきことがあります。Altium Designerのライブラリ管理機能を使用すれば、古い設計データを新しいプロジェクトに簡単にインポートし、新しい設計で使用することができます。Altium Designerで古いデータを再利用する方法について、いくつか見ていきましょう。 古いレイアウトの再利用 古い基板レイアウトを新しいプロジェクトで再利用する方法はいくつかあります。回路図および基板レイアウトはライブラリのコンポーネントデータに依存するため、設計データがこのデータに適した位置を指していることを確認する必要があります。例として、Altium Designer 19で作成した回路図およびレイアウトを見てみましょう。このレイアウトと回路図には、「Miscellaneous Devices」ライブラリ(Altium Designerに付属している)の100pFコンデンサーと、ATMega328Pマイクロコントローラーが含まれています。マイクロコントローラー用の統合ライブラリは、インターネットからダウンロードしたコンポーネント データから作成しました。 回路図と基板レイアウトは独自のプロジェクトで作成されたもので、回路図ファイルとレイアウトファイルはローカルハードドライブに保存されています。これらのファイルを別の設計者に転送するシミュレーションを行うため、私は新しいプロジェクトを作成し、Altium Designerの[Components] パネルからATMega328Pマイクロコントローラーライブラリをアンインストールし、コンピューターから統合ライブラリファイルを削除しました。 回路図ファイルと基板レイアウトファイルを新しいプロジェクトで開くだけの場合は、フットプリント シンボルと回路図シンボルを表示できますが、コンポーネントのデータにアクセスすることはできません。コンポーネントのプロパティ(PCBエディターの 記事を読む