マルチボードPCB設計

マルチボードシステムやアセンブリには電気設計と機構設計上の課題があり、両設計ドメイン間の緊密なコラボレーションが必要です。マルチボードPCBアセンブリの設計と構築、MCADツールがPCB設計プロセスに役立つ方法については、当社のリソースのライブラリをご参照ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
エンベデッドシステムのアーキテクチャ:製品に複数のPCBがある場合 組み込みシステムのアーキテクチャ:製品に複数のPCBがある場合 1 min Altium Designer Projects 電気技術者 電気技術者 電気技術者 組み込みシステムは、今日の技術主導の世界で至る所に存在します。インターネットに接続されたシェーバーであれ、複雑な自動車であれ、私たちが今日使用しているほとんどの電子デバイスの中心には組み込みデバイスがあります。1つまたは複数のマイクロプロセッサで構成される組み込みシステムは、複雑さをソフトウェアによって処理させることで、電子機器を簡素化することができます。組み込みデバイスが大きく複雑になるにつれて、プリント回路基板(PCB)も同様に大きく複雑になります。しばしばこれらのデバイスは複数の基板に成長し、当初意図されたよりも大きなアセンブリになることがあります。 この記事では、複数のPCBで構成される組み込みシステムのアーキテクチャのトレードオフと考慮事項について見ていきます。複数のPCBシステムに関連する利点、設計上の考慮事項、および課題について説明します。 なぜ複数のPCBを使用するのか? デバイスを単一のPCBに保つことが理想的な選択肢です(単純さとコストの両方のために)、しかし、設計目標を達成するためには、設計を2つ以上のPCBに分割する必要があることもあります。製品を複数の基板に分割したい理由のいくつかは以下の通りです: モジュラリティ: アセンブリを複数の基板に分けることで、必要に応じて製品の一部だけを交換できます。例えば、単一のPCBが故障した場合、システム全体に影響を与えることなく交換することができます。これは、正しく行われた場合、製造業者のコストと時間を削減することができます。 スペースの最適化: 複数の基板にコンポーネントを分割することで、デザイナーはよりコンパクトで効率的なレイアウトを実現できます。パッケージングのために高さが問題にならない場合の、非常に長く狭い単一の基板と比較して、いくつかの短く積み重ねられた基板を考えてみてください。 熱管理: 多くの熱を発生させるコンポーネントは、熱の放散を改善するために異なるPCBに分割することができます。アセンブリ全体にわたって熱を均等に分散することで、システムの信頼性を大幅に向上させることができます。 スケーラビリティ: 複数のPCBを使用して設計することで、単一の基板で交換可能なインクリメンタルな機能追加が可能になります。全体のコンピューティングシステムを交換することなく、アップグレードされたセンサーやカメラを考えてみてください。 これらの理由(およびその他)から、複数のPCBで構成されるアセンブリを設計することを考慮しますが、組み込みファームウェア側の課題も複雑さを持っています。 複数のPCBアセンブリのための組み込み設計の考慮事項 複数のPCBを使用する場合(該当する場合)のケースを確立した今、組み込みシステムをアーキテクチャする際の設計上の考慮事項を理解することが重要です。ハードウェアとソフトウェアの両方の観点から、単一の基板にすべてを載せるときにはあまり慎重に考慮しないニュアンスがあります。 最初に頭に浮かぶべき考慮事項は、ボード間通信です。各ボードはどのようにして互いに通信するのでしょうか?どのような処理能力(もしあれば)が各ボードに存在するのでしょうか?もしかすると、1枚のボードが脳の役割を果たし、他のボードがセンサーの役割を果たしているのかもしれませんね。I2C、SPI、UART、Ethernetなど、慎重に伝送プロトコルを選び出す際には、伝送線、信号の整合性、そして最も重要な、ボード間コネクタを通じた信号の伝送も考慮しなければなりません。設計者にとって最悪なこと(そして信じてください、私もそこにいました)は、システム全体を設計し、製造業者からPCBを受け取った後で、クロック信号を1つや2つ見落としていたことに気づくことです。また、ボード間コネクタのスペアピンを確保することを忘れがちで、ピン数を最大限に活用しようと試みます。これは最終的に私たちを苦しめることになります。 Altium Designerのマルチボードアセンブリ機能のように、多数の通信ラインをPCB間でルーティングする際には、マルチボードプロジェクトを念頭に置いて設計することが必須です。 また、特にマイクロプロセッサで電力バスを監視する場合、電力の分配方法についても考える必要があります。「脳」へのアクセスを容易にして、任意の壊滅的なイベントを監視できるようにしたいですが、スイッチング供給のノイズ、重負荷のための電力分配、そしてボード間コネクタのピンがその種の電力に耐えられるかどうかも考慮する必要があります。 最後に、組み込みシステムのソフトウェア自体とは直接関係ありませんが、機械設計も重要な役割を果たします。プッシュボタン、タッチスクリーン、およびその他のユーザーへの物理的インターフェースは、マイクロプロセッサに接続されており、考慮されなければなりません。配線はマイクロプロセッサが入力にアクセスできるようにルーティングできるでしょうか?ボード間を通過する際の高速デジタル出力の信号整合性を考慮しましたか?これらは、組み込みデバイスを設計する際に考えなければならないことです。 記事を読む
TotM_March Altium Designerがデザイナーを支え、複雑なPCBプロジェクトをマスターする方法 1 min Blog PCB設計者 PCB設計者 PCB設計者 プリント基板(PCB)の複雑さが増す中で、迅速な技術進化に対応しつつ、設計プロセスを効率的に管理できるツールへのアクセスが必要です。Altium Designerは、現代のPCB設計の課題を克服するために特別に調整された強力な機能セットを提供し、以下の属性に示されるように、この分野のさまざまな要求の厳しいプロジェクトにとって欠かせない資産となります。 制約管理 複雑で高性能な電子デバイスを作成するには、設計制約の管理が重要です。Altium Designerの高度な制約管理システムは、現代のPCBプロジェクトに存在する複雑な課題を理解していることを示しています。これにより、設計ルールと制約の複雑な網を専門的に管理するために必要なツールと柔軟性が提供され、革新が正確なコンプライアンスと出会う環境が育まれます。 適応型制約管理 Altium Designerの制約管理システムは、プロジェクトの変化するニーズに合わせてリアルタイムで調整できる動的な性質によって区別されます。この柔軟性は、初期計画が進化する可能性がある複雑なプロジェクトで非常に貴重です。設計仮定への調整が必要になります。システムが設定された制約からの逸脱を迅速に特定し、修正することで、潜在的な問題が早期に対処され、高価な修正やデバイスの性能を損なうことが最小限に抑えられます。 階層的および条件付きルール 階層的および条件付きルールをサポートすることで、Altium Designerは制約管理のプロセスをさらに洗練させます。制約に優先順位を設定できるため、重要な基準が満たされることを保証しつつ、より寛容な要件のある領域での調整が可能になります。条件付きルールは、定義された条件下で特定の制約を適用する能力を提供し、各プロジェクトのユニークな課題に合わせた設計プロセスにダイナミズムと適応性の層を追加します。 リアルタイム違反検出 Altium Designerの制約管理の目立つ特徴は、その即時違反アラートシステムです。PCBをレイアウトする際、ソフトウェアは設計を確立されたルールと制約と比較し、リアルタイムで不一致をフラグします。この積極的な姿勢は、設計プロセスを合理化するだけでなく、高価なエラーやその後の再作業のリスクを大幅に低下させます。 包括的な設計機能 Altium Designerは、高密度インターコネクト(HDI)や迅速な電子レイアウトから、包括的なマルチボードアセンブリ、複雑な配線ハーネス、および多様なリジッドフレックスPCB構造まで、幅広いPCB設計要件に対応するように設計されています。その適応性は、統一されたプラットフォーム上でさまざまなプロジェクトタイプをナビゲートする力を提供し、設計ワークフローを強化し、異なるソフトウェアアプリケーションへの依存を減らします。特に今日の電子機器の領域では、よりコンパクトでありながらますます強力なデバイスを求めるクエストによって駆動され、最先端のPCB技術が必要とされるため、HDIデザインを管理する機能は特に重要です。 高速電子設計の効果的な方法 高速デジタル技術が広く普及するにつれて、信号の整合性を維持することがより重要になってきます。Altium Designerは、洗練されたルーティング機能とシミュレーション機能を備えており、このような課題を克服するのに役立ちます。差動ペアの精密な管理、インピーダンス制御、特定の長さと遅延要件に合わせた高速信号のルーティングツールを含み、高速設計における信号のクロストークや反射といった一般的な問題から保護します。 記事を読む