Skip to main content
Mobile menu
Discover
Develop
Agile
リソース&サポート
リソース&サポート
ラーニングハブ
サポートセンター
マニュアル
Webセミナー
Altium Community
フォーラム
バグの報告
アイディア
大学・高専
学生ラボ
教育者センター
Altium Education カリキュラム
Search Open
Search
Search Close
サインイン
PCB設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
ホーム
PCB設計
PCB設計
業界をリードする専門家によるPCB設計の最新情報をご覧ください。
Learn How Altium Supports PCB Designers
Overview
All Content
ウェビナー
Filter
見つかりました
Sort by
最新
人気順
タイトル(昇順)
タイトル(降順)
役割
ECADライブラリ管理者
電気技術者
技術マネージャー
ITマネージャー
機械エンジニア
PCB設計者
購買・調達マネージャー
ソフトウェア
Develop
Agile
Altium Designer
Altium 365
Assembly Assistant
BOM Portal
PLM統合
Configurable Workflows
GovCloud
MCAD CoDesigner
Octopart
Requirements Portal
SiliconExpert
Z2Data
コンテンツタイプ
ガイドブック
ビデオ
ウェビナー
ポッドキャスト
ホワイトペーパー
適用
Americas
EMEA
ANZ
APAC
産業4.0、人工知能、製造業におけるIoT
1 min
Blog
エレクトロニクスに関して言えば、スマートフォンやAlexaのような消費者向けデバイスがすべての注目を集めがちです。しかし、 Ventec International GroupのAlun Morganによると、「世界で生産されるPCBの約23%が製造アプリケーションの電子機器に使用されています。」自動車、通信、電力生成/配布、およびコンピューティングなど、製造業務をサポートする他の非消費者向けカテゴリーを含めると、この数字はさらに上昇します。西洋の製造業者は、工場の床でのより大きな自動化と生産性を通じてのみ、オンショア化が実現すると広く受け入れています。これがインダストリー4.0の本質であり、工場の運営がこれまで以上にインテリジェントで、よりつながっています。 では、製造業者はオンショア化を通じてどのようにしてさらに費用を削減し、生産性の利点を見出すことができるのでしょうか?この質問には、3Dプリンティングのような先進的な製造技術を考慮すると、いくつかの答えがあります。皆が同意する一つのことは、多くの製品の製造業務は近い将来さらにデジタル化されるということです。このレベルのデジタル化には、機器を動かしデータを収集するためのPCBと、迅速にデータを処理し有用な洞察を得るための技術が必要です。インダストリー4.0では、人工知能(AI)が運営の管理とデータの処理に不可欠であり、最終的にはマネージャーやエンジニアに洞察を提供します。 インダストリー4.0とAIのための設計 製造業務をサポートする新しいAIシステムを設計することは、ソフトウェアに関することだけでなく、ハードウェアの取り組みでもあります。両方の領域は互いに補完し合います。組み込みボードは組み込みソフトウェアをサポートするように設計されなければならず、組み込みソフトウェアはボード上の他の機能を制限するほどリソースを消費してはなりません。これは、すべての製造資産とデータ取得/処理をサポートするシステムが組み込みIoTエコシステムになり、データは中央の場所またはクラウドで処理されることを意味します。 インダストリー4.0では、より多くの製造資産が接続されるにつれて、製造業者はこれまで以上に大量のデータを生成することが期待されます。この接続性は、IPC-CFX標準のような新しい業界標準のデータ交換を通じて可能になります。任意の製造操作がその資産を接続し、あらゆる製造プロセスを通じてデータを集約したい場合、工場全体にわたって多数の組み込みIoTデバイスが必要になります。 インダストリー4.0のための組み込みIoT設計要件 新しい組み込みIoTデバイスは、いくつかの基本的なハードウェア要件を満たしていれば、AIアプリケーションをサポートできます。これらの組み込みデバイスは、標準的なAI/MLモデルをサポートしつつ、標準プロトコルを介してデータの通信を可能にする特殊なシングルボードコンピュータです。ここでは、インダストリー4.0の製造業務のための新しいシステムを設計する際に考慮すべきいくつかの基本的な要件を紹介します: 処理能力:これはクロック速度についてではなく、並列処理についての話です。より多くのコア/プロセッサを持つシステムやクラスタリングが可能なシステムでは、データをより速く処理し、AIモデルで使用できます。 オンボードメモリ:必要なメモリ量は特定のアプリケーションに依存します。画像処理のためのシステムは、数値データ処理のためのシステムよりも多くのメモリを必要とします。 他のセンサーとのインターフェース:データは、環境センサーから、製造装置内のセンサーから、または その他のさまざまなセンサーから直接取得する必要があるかもしれません。 通信能力:これは必要な通信範囲に基づいて選択する必要があります。長距離通信にはNB-IoT、LoRaWAN、LTE-Mなどの無線プロトコルを使用できますが、短距離通信にはBluetooth LE、WiFi、Ethernetが一般的です。 産業4.0 AIシステムのためのモジュラーデザイン コスト削減と生産性向上は、新しいシステムを迅速に展開し、設定することについてです。ほとんどの製造技術者はプリント回路設計者ではありませんが、この重要なクラスのエンジニアは、
記事を読む
NVIDIA Jetson Nano:レーン検出と追跡
1 min
Blog
自動運転車は徐々に自動車産業の重要な部分となりつつあります。多くの人々は、完全自動運転車が間もなく人間と並んで走るようになると信じており、技術企業は完全自動運転車を展開するための競争に参加しています。2018年12月、Googleの自動運転車プロジェクトから生まれた会社である Waymoは、フェニックス郊外で商用自動運転車サービスを正式に開始しました。May Mobility、Drive.ai、Uberなどの企業も同じ道を歩んでいます。 自動運転車は壮大なビジョンのように思えるかもしれませんが、半自動運転車はすでに私たちの間にあります。新しいTeslaの車には、Tesla Autopilot機能が搭載されており、車線認識と追跡、アダプティブクルーズコントロール、自動駐車が可能です。道路上の車線を識別し追跡する能力は、無人運転車にとって多くの前提条件の一つです。車線認識は難しい問題のように思えるかもしれませんが、NVIDIA Jetson Nanoハードウェアプラットフォームを使って、車線認識と追跡のアルゴリズムの開発を始めることができます。 Jetson Nano入門 Jetson Nano COMは、 Raspberry Pi 3よりもわずかに大きいですが、472 Gflopsのパワーで並列にニューラルネットワークを実行できます。これはRaspberry Pi 3よりも約22倍強力であり、わずか5Wという非常に低い電力で動作します。このボードは、トリムダウンされたLinuxカーネル上で動作する組み込みAIアプリケーションに最適です。高品質な画像およびビデオ処理アプリケーションに必要な処理能力とオンボードメモリを備えています。Jetson Nanoの主な特徴には次のようなものがあります: GPU
記事を読む
最高のPCBアンテナ設計ソフトウェアでアンテナ実装が容易になる
1 min
Blog
回路基板アンテナの設計は、どのソフトウェアにとっても難しい作業になり得ますが、Altium Designerなら問題になることはありません。これは、あなたのBLEアンテナ設計ソフトウェアとして、そしてそれ以上のことにも対応できるソフトウェアです。 ALTIUM DESIGNER アンテナ設計が問題なく配置されるようにする 消費者と産業の需要が、より小型の無線デバイスの需要を促しています。これらのデバイスは、ウェアラブル技術、Bluetooth Low Energy (BLE) アプリケーション、個人通信システム、インターネットオブシングス(IoT)アプリケーション、医療技術、自動車の先進運転支援システム、その他の革新的な技術をサポートしています。これらおよびその他のアプリケーションは、物理的なフットプリントとコストを削減しながら性能を維持するPCBアンテナを必要とします。さらに、PCBアンテナ設計は、典型的な2.4 GHz帯からミリ波帯の周波数に至るまでの周波数要件にも対応する必要があります。 PCBやチップアンテナ上に延びる三次元のワイヤーを使用する代わりに、PCBアンテナ設計ソフトウェアはプリント基板上に描かれたトレースで構成されています。アンテナの種類やスペースの制約に応じて、PCBアンテナ設計者が使用するトレースの種類には、直線トレース、反転F型トレース、蛇行トレース、円形トレース、またはウィグルがある曲線トレースが含まれます。PCBアンテナの二次元構造は、製造元が指定した仕様を満たすために、Altium Designerのような堅牢なアンテナ設計ソフトウェアを必要とします。 最高のPCBアンテナシミュレーションソフトウェアは、イノベーションをアプリケーションにマッチさせます 製造業者は、ケーブルやコネクタを含む既製のコンポーネントとしてPCBアンテナを提供する場合があります。利用可能なPCBアンテナオプション(例えば、BLEアンテナ設計、IoTアンテナなど)が豊富にあるため、チームはシステム設計に追加したり、電気的および機械的要件に応じてアンテナをカスタマイズすることができます。PCBアンテナの設計は、基本的なマイクロストリップパッチから、マイクロストリップパッチ、ストリップライン、共面導波管(CPW)伝送線の組み合わせに至るまで様々です。一部の設計では、同じPCBアンテナ内で異なるタイプの伝送線を組み合わせることがあります。 PCBアンテナ設計ソフトウェアの選択は、アプリケーションに依存します。ワイヤレスマウスには、他のアプリケーションが必要とするRF範囲やデータレートと同じものは必要ありません。インターネットオブシングスに接続されたセンサーやデバイスは、より大きなRF範囲と高いデータレートを必要とします。新しいPCBアンテナ設計は、広帯域周波数範囲が必要なシステムアプリケーションや同じアンテナによって複数のアプリケーションが提供されることに対応するために、デュアルバンドおよび複数周波数バンドのカバレッジを特徴としています。 RF範囲の変動のために、同じ電力要件を持つ設計でも、異なるレイアウトを採用し、アンテナ設計のために異なる原則を適用することがあります。アプリケーションに関係なく、アンテナの設計とRFレイアウトが性能に最も大きな影響を与えます。さらに、PCBアンテナシミュレーションソフトウェアは、RFトレースのレイアウトガイドラインに従い、PCBスタックアップとグラウンディングのベストプラクティスに準拠し、電源供給のデカップリングを提供し、適切なRFパッシブコンポーネントで構成されている必要があります。設計と製品要件の違いが、PCBアンテナ設計ソフトウェアの必要性を確立します。 例として、高い利得を必要としない高周波アプリケーションでは、誘電体によって大きなグラウンドプレーンから分離された回路基板の片面に形成されたマイクロストリップパッチからなるモノポールPCBアンテナが使用されます。他のアプリケーションでは、特定の周波数でより高い利得を必要とし、多層構成を使用する場合があります。どちらの場合も、ターゲット動作周波数の波長はパッチのサイズと直接関係があります。 PCBアンテナ設計には基本的なアプローチが必要です PCBアンテナ設計は、主要な性能パラメータの設定から始まります。これらのパラメータには
記事を読む
Altium Designerによる円形や曲線状のPCB設計
1 min
Blog
現代の生活は、電子機器なくして成立しません。まるで、家にあるもの全てをPCBに配線する最初の人間になる競争をしているかのようです。デバイスの形状やサイズがきわめて多岐にわたってきており、円形のPCBがいっそう普及しています。円形のPCBで次のデバイスを設計したいとお考えなら、四角形のPCBを前提とした作業に制約されないCAD/レイアウト ツールを備えた設計ソフトウェアが必要です。 Altium Designerで作業すれば、PCBのフットプリント/レイアウトを全面的に制御できるようなり、あらゆる形状、サイズのPCBを構築できます。 Altium Designer 曲線状や円形のPCBに対応する、優れたレイアウト ツールを備えたPCB設計ソフトウェア パッケージ PCBがかつてないフォームファクターに対応し、いっそう高度な機能を必要としているため、設計方法もこのような変化に着いていかなければなりません。次の電子機器が円形のフォームファクターなら、円形のPCBを使用することで基板スペースが広がり、四角形の基板をいくつも使用するよりも望ましいといえます。特定のアプリケーションに応じて、多くの他のデザインルールや方法を実行する必要もあるでしょう。優れたCAD/レイアウト ツールを備えたPCB設計ソフトウェア パッケージを使用することで、次の円形のPCB設計がスムーズに行えます。 円形や曲線状の設計方法 PCBの形状が決まったら、CADツールで基板の形状を描画する必要があります。これが基板の基礎を形成するもので、設計者は次にコンポーネントの配置に進むことができます。高性能デバイスの場合は、高速/高周波機能を備える多層PCBを設計することになります。各レイヤーにGND/電源プレーンを定義する必要もあります。電源/GNDレイヤーの形状の定義には、設計ソフトウェアに組み込まれたポリゴンエディターが必要です。 特定のアプリケーションに対応する円形のPCB設計 特定のアプリケーションでは曲線状や円形のデバイスが求められ、それによってPCBの設計もデバイス パッケージのフォームファクターに合わせる必要があります。四角形の基板を曲線状のパッケージ内部に使用すると、利用できる基板スペースが縮小します。そのため、曲線状の設計にすることでパッケージの輪郭に合ったPCBを実現できます。これによって、いっそう設計の柔軟性が得られ、将来、新しい機能を組み込むために設計を拡大することもできるようになります。 特定の基板形状は、各アプリケーションに応じて優れたCADツールを必要とします。優れた設計ソフトウェアは、曲線状や円形のPCBの作成を実現します。 特定のアプリケーションに応じた基板形状のカスタマイズの詳細については、こちらをご覧ください。 曲線状や円形のPCBで電源/GNDプレーンを定義するには、ポリゴンエディターを備えた設計ソフトウェアが必要です。これによって、GND/電源プレーンのカスタマイズが可能になり、円形のPCBに適応することができます。
記事を読む
アプリケーションに合わせたAIのカスタマイズ
1 min
Blog
AI技術は、デバイスが世界とどのように相互作用するかを急速に変えています。従来、プログラマーはシステムが現実世界のさまざまな予測不可能な状況にどのように反応するかを事前に決定する必要がありました。AIを使用すると、そのモデルは望ましい反応を捉えるように訓練され、予期しなかった状況に対しても信頼性の高い望ましい反応を提供できるようになります。 AIに新しい開発者が直面する課題の一つは、アプリケーションに合わせたAI実装をカスタマイズすることです。特定のアプリケーションが自身のボード実装を正当化するのに十分なボリュームを持っていない限り、市販のAIボードは一般的な効果に焦点を当てがちです。それらはすべてのアプリケーションに必要ではないリソースやインターフェースを持っているため、不必要にコストを増加させます。 例えば、 Jetson Nano Developer Kit のような開発者キットは、基本的なAI実装を作成する方法に慣れるのに最適な方法です。Jetson Nanoにはさまざまなインターフェースが付属しており、非常に短時間でテストシステムを立ち上げて動かすことが簡単です。このキットは、センサー処理からビデオ分析、音声処理に至るまで、幅広い多様なアプリケーションの優れた出発点として機能します。 しかし、一般的なAIシステムの構築方法を理解すると、最終的な製造ハードウェアに可能な限り近いプロトタイプを使用してアプリケーションの開発を開始したくなるでしょう。これは、AIをエッジに移行する際に特に重要です。 クラウド内のGPUのコスト、可用性、およびスケーラビリティは非常に柔軟です。必要な応答性を得られない場合や、モデルが当初考えていたよりも多くのデータを効果的に処理する必要があることがわかった場合、簡単にクラウドリソースを追加できます。 しかし、エッジではそうはいきません。エッジでは、コスト、パフォーマンス、および精度のバランスを取りたい場合に最適なリソースの組み合わせを決定する必要があります。理想的には、大幅なハードウェア変更を強いることなく簡単にダウンスケールできるシステムが必要です。 また、センサー、カメラ、インターフェース、メモリ、MCUなど、アプリケーションの残りの部分を構成するコンポーネントも設計の容易さに影響します。これは、ある時点でAIシステムをアプリケーションの残りの部分と統合する必要があるためです。 ビデオイメージのサイズを増やす必要があることがわかった場合に必要となるカスケード変更を考えてみてください。AIモデルは異なるサイズのイメージを扱う必要があり、システム全体のパフォーマンスとメモリ要件が完全に変わります。さらに、新しいカメラを既存のファームウェアとシームレスに統合する必要があり、できればファームウェアの書き換えを避けたいところです。この新しいリソースの組み合わせをバランス良く最適化するには時間もかかります。さらに、2台目のカメラを追加し、実効フレームレートを上げる必要があると想像してみてください。 この統合段階は、手動で行う必要がある場合、非常に時間がかかり、イライラすることがあります。たとえば、同じベンダーのカメラドライバーであっても互換性がないことがよくあります。新しいドライバーが前のものと全く同じように動作することを確認するために、広範なテストを行う必要があります。 Geppetto のようなカスタムプラットフォームアプローチをデザインに採用することで、開発時間を大幅に短縮できます。Geppettoを使用すると、実証済みの機能ブロックをドラッグアンドドロップでカスタムボードに追加できます。AIアプリケーションの場合、Jetson Nanoから始めて、必要ない機能を削除できます。その後、センサー、インターフェース、プロセッサー、その他の回路を広範なモジュールライブラリから追加し、アプリケーションに最適化されたカスタムモジュールを構築できます。 このアプローチの主な利点は、初期の開発とテストのために少数のボードをコスト効率よく製造できることです。もし、より多くの処理能力が必要になった場合、またはそれ以下である場合でも、完全に新しいシステムを設計することなく、簡単にデザインを調整できます。 さらに、カスタムボードはOSとドライバーが事前に統合されています。すべてのコンポーネントを連携させる必要はありません。なぜなら、私たちがすでにそれを行っているからです。
記事を読む
Altium 365におけるPCB設計のレビューとコラボレーション
1 min
Blog
最近ではリモート協力ツールが至る所にあり、設計者は電子設計のための便利な協力システムにアクセスできるようになりました。設計チームの一員であるか、製造業者から推奨された設計変更を迅速に実行する必要があるかどうかにかかわらず、PCB設計アプリケーション内ですぐにアクセスできるクラウド協力ツールが必要です。 今ではAltium 365を使用することで、Altium Designer内でアクセス可能なクラウド駆動の設計インターフェースを利用できます。このプロセスは難しそうに聞こえるかもしれませんが、Altium 365のワークスペースにアクセスするだけで全てが可能になります。新しいPCB設計プロジェクトにおいて、どのように迅速に協力を開始できるか、そしてチームが手動でファイルを各チームメンバーに送信することなく設計に変更を容易に加えることができる方法についてここで説明します。 PCB設計協力プロセスの開始 このチュートリアルでは、Altium 365のウェブインターフェースを通じて設計を見ているデザイナーと、Altium Designerで設計に取り組んでいる別のデザイナーの2つの役割を想定します。Altium 365のワークスペース内から、私の設計のための新しいプロジェクトを作成し、共同作業者にアクセス可能にすることができます。また、Altium Designer内で新しいプロジェクトを作成し、すぐにワークスペースに保存して、共同作業者がアクセスできるようにすることもできます。 Altium 365のウェブインスタンスにログインしていることを確認してください。その際、Altium Designerのユーザー認証情報を使用します。 クラウドを通じてこれを行う利点は、共同作業者がプロジェクトファイルを送り合うことなく、Altium Designer内でプロジェクトに即座にアクセスできることです。彼らはAltium Designer内のOpen Project機能を使用するだけで、あなたのワークスペース内のプロジェクトにアクセスできます。 共同作業者が見ることができるプロジェクトとファイルを制御できます、そして手動で変更を追跡することについて心配する必要はありません。もしプロジェクトの以前のバージョンに戻す必要がある場合や、現在の状態でプロジェクトのクローンをすぐに作成する必要がある場合でも、すべてのプロジェクトデータはAltium 365に組み込まれた安全なバージョン管理システムにあります。
記事を読む
PCB外層処理の概要
1 min
Thought Leadership
エキスパートのケラ・ナックがPCB外層の製造について詳しく説明しています。異なるビアがどのように形成されるか、多層構造プロセスにおけるステップについて読んで学びましょう。
記事を読む
Pagination
First page
« First
Previous page
‹‹
ページ
92
現在のページ
93
ページ
94
ページ
95
ページ
96
ページ
97
Next page
››
Last page
Last »