Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
PCB設計
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
Easy, Powerful, Modern
The world’s most trusted PCB design system.
Learn More
PCB設計
業界をリードする専門家によるPCB設計の最新情報をご覧ください。
Altium Designer - PCB設計ソフトウェア
Altium 365 - PCB設計クラウドプラットフォーム
Altium Nexus - アジャイルPCB設計
無償評価版
高速PCB設計:信号整合性、EMI軽減、および熱管理の確保
高速信号の整合性は、現代のPCB(プリント回路基板)設計において重要であり、性能、信頼性、およびコンプライアンスに影響を与えます。高速PCBを設計するには、クロストーク、電磁干渉(EMI)、および熱管理などの信号整合性の問題を管理する必要があります。この記事では、クロストーク、グラウンドプレーン戦略、電磁干渉(EMI)、および熱管理を含む高速信号整合性のいくつかの重要な側面を探り、実用的な洞察と例を提供します。これらの概念をさらに深く掘り下げ、拡張された戦略と詳細な例を提供しましょう。 電磁結合とクロストーク 電磁結合:隣接するトレースの信号は、互いに電磁場を誘導することができ、干渉を引き起こします。この現象は電磁結合として知られており、高い周波数でより顕著になります。例えば、密接に配置された高速データラインを持つPCBを考えてみましょう。あるトレースが高周波のクロック信号を運び、隣接するトレースが敏感なデータ信号を運ぶ場合
記事を読む
Pi.MX8 プロジェクト - ボードレイアウト パート4
Pi.MX8コンピュートモジュールSoMプロジェクトの新しいインストールメントへようこそ!このアップデートでは、PCB設計に最後の仕上げを行い、プロトタイプの生産準備を整えます。 前回の 記事では、信号層のルーティングを完了しました。これはPi.MX8モジュールのPCBレイアウトで最も時間がかかる部分でした。しかし、同じくらい注意を要する2つのタスクがまだ残っています。電源プレーンのルーティングと信号遅延の調整です。 電源プレーン まず、電源プレーンから始めましょう。私は通常、遅延調整を最後のステップとして行うのが好きです。なぜなら、長さ調整のために必要なメアンダーがボード上の残りのスペースをしばしば埋め尽くすからです。例えば、電源ネットをルーティングする際に追加のVIAを配置する必要がある場合(時には必要になることがあります)、必要なスペースを作るために長さ調整プリミティブを調整する必要が出てくるかもしれません。最後に長さ調整プリミティブで残りのスペースを埋めることで
記事を読む
PCBデザイナーのための究極の高速信号整合性入門
シグナルインテグリティの基礎 シグナルインテグリティとは、PCB(プリント回路基板)を通過する電気信号の品質と信頼性を指します。高速PCB設計において、シグナルインテグリティを維持することは重要であり、わずかな信号の歪みでもデータの破損、通信エラー、全体的なシステムの故障につながる可能性があります。インピーダンスの不一致、クロストーク、信号の反射、電力の変動などの要因がシグナルインテグリティに大きな影響を与えるため、慎重な設計と分析が必要です。 PCBにおけるインピーダンスの理解 PCB設計の文脈において、インピーダンスとは、交流が回路を通過する際に遭遇する抵抗のことです。このインピーダンスは、トレースの幅や厚さ、これらのトレースの間に使用される誘電体材料の種類、PCBの層の全体的な構成など、さまざまな要因によって形成されます。高速PCBアプリケーションでは、信号の反射を避け、信頼性の高いデータ伝送を保証するために、一定のインピーダンスを維持することが重要です。
記事を読む
Pi.MX8 プロジェクト - ボードレイアウト パート3
Pi.MX8オープンソースコンピュータモジュールプロジェクトの新しいインストールメントへようこそ!このシリーズでは、NXPのi.MX8Mプラスプロセッサを基にしたシステムオンモジュールの設計とテストについて詳しく説明します。 前回の アップデートでは、レイアウト準備を完了しました。これには、インピーダンスプロファイルの作成、ボード製造業者の仕様に従った設計ルールの追加、特別な設計ルールを適用すべきエリアの定義が含まれます。また、LPDDR4インターフェースのルーティングも完了しましたが、長さ調整は(今のところ)行っていません。 DRAMインターフェースの長さ調整を始める前に、Pi.MX8モジュール上の残りのインターフェースのルーティングを見ていきます。ボード上には、多くの高速および低速バスがあり、その中には多くのルーティングスペースを必要とする広い並列バスもあります。各インターフェースに十分なスペースを割り当てるために
記事を読む
Altium Designerがデザイナーを支え、複雑なPCBプロジェクトをマスターする方法
プリント基板(PCB)の複雑さが増す中で、迅速な技術進化に対応しつつ、設計プロセスを効率的に管理できるツールへのアクセスが必要です。Altium Designerは、現代のPCB設計の課題を克服するために特別に調整された強力な機能セットを提供し、以下の属性に示されるように、この分野のさまざまな要求の厳しいプロジェクトにとって欠かせない資産となります。 制約管理 複雑で高性能な電子デバイスを作成するには、設計制約の管理が重要です。Altium Designerの高度な制約管理システムは、現代のPCBプロジェクトに存在する複雑な課題を理解していることを示しています。これにより、設計ルールと制約の複雑な網を専門的に管理するために必要なツールと柔軟性が提供され、革新が正確なコンプライアンスと出会う環境が育まれます。 適応型制約管理 Altium Designerの制約管理システムは、プロジェクトの変化するニーズに合わせてリアルタイムで調整できる動的な性質によって区別されます。この柔軟性は
記事を読む
なぜAltium Designerが直感的かつ知的にPCBを設計するのに役立つのか
プリント基板(PCB)の複雑さが増すにつれて、最先端ツールへの需要はより重要になっています。Altium Designerは直感的なデザインとインテリジェントな機能性を融合させ、以下のような主要機能に焦点を当てた先導的なソリューションを提供します: 統合されたデザイン環境とデータモデル; 包括的な統合解析ツール; 3D成形インターコネクトデバイス(MID)デザインの機能。 統合されたデザイン環境とデータモデル Altium Designerの 統合されたデザイン環境とデータモデルは、従来の分断された方法から離れ、PCBデザイン技術において大きな前進を示しています。統合されたエレクトロニクスデザインアプローチを採用することで、概念化から生産に至るまでの全プロセスが合理化され、より効率的なPCBデザインとエレクトロニクス製造に向けて大きく転換し、エラーの余地が少なくなります。 PCBデザインの断片化を解消する 従来
記事を読む
Pi. MX8 プロジェクト - ボードレイアウト パート1
Pi.MX8オープンソースコンピュータモジュールプロジェクトの第3回へようこそ!この記事シリーズでは、NXPのi.MX8Mプラスプロセッサをベースにしたシステムオンモジュールの設計とテストについて詳しく説明します。 前回の更新では、モジュールの回路図の構造を見て、予備的な部品配置の準備を始めました。部品を配置した今、設計の密度とそれがレイヤースタックに要求することがどの程度かがよくわかります。今日は、適切なスタックアップを選択し、最初のトラックのルーティングを開始します。 レイヤースタックの定義 部品配置といくつかの戦略的要因に基づいて、今後の設計に使用したいPCB技術とレイヤースタックを決定できます。まずは部品の密度を見てみましょう: 部品配置 トップサイド 予備的な部品配置により、全体的な設計の密度が適度であることが明らかになりました。アクティブな部品はすべて基板のトップサイドに配置され、ボトムサイドには主にデカップリングキャパシタやその他の受動回路が含まれています。そのため
記事を読む
PCB設計者のためのEMIおよびEMCコンプライアンス101
PCB設計および電子製品設計におけるEMIおよびEMCコンプライアンス要件の基本を学びましょう。
記事を読む
ADC/DAC用のJESD204C規格とは何ですか?
JESD204Cは、商用宇宙アプリケーションでより多く登場している高サンプルレートのRF ADCに対して、標準化されたインターフェースを提供します。
記事を読む
アイダイアグラムとは?
アイダイアグラムは、高速チャンネル内の信号の動作と、反復励起に対するチャンネルの応答について知る必要があるすべての情報を提供します。
記事を読む
ハイブリッド・ビームフォーミングとは何ですか?
ビームフォーミングは、特定の方向に電磁エネルギーを送信するために無線システムでアンテナアレイを使用する重要な放送方法です。より多くの無線システムが、ビームフォーミングとMIMOを使用して複数のユーザー(またはターゲット)を処理する能力を拡大しています。これは既にレーダー、WiFi、および新しい高帯域幅通信システム(5G)で使用されています。システム設計者にとって、これらのシステムのアンテナアレイのレイアウト要件を理解することが重要です。これらは、RFシステムで使用されるビームフォーミング方法に関連しています。 ビームフォーミングに関しては、MIMOとの区別について混乱が生じることがあり、二つは互いに関連していないと述べられることがあります。これは特別な場合にのみ真実ですが、一般的には多ユーザーMIMO( MU-MIMO)は、複数のターゲットに変調信号を指向するためにビームフォーミングを必要とします。 この記事では
記事を読む
PCB設計におけるデジタルトランスフォーメーションとは何か?
革新的な企業は、企業レベルでデジタル変革を受け入れています。
記事を読む
スプレッディングインダクタンスとは何ですか?
平面ペアの広がりインダクタンスは単純な意味を持っていますが、計算するのは難しい場合があります。ここでは、設計者が平面ペアの広がりインダクタンスについて知っておくべきいくつかのポイントを紹介します。
記事を読む
PCBサプライチェーンとは?
PCBサプライチェーンは、原材料からコンポーネントに至るまで、PCB製造プロセスのすべての部分を網羅しています。PCBサプライチェーンの詳細については、ガイドをご覧ください。
記事を読む
製品ライフサイクル管理とは?
製品ライフサイクル管理(PLM)とは何でしょうか?適切に実行されるPLMシステムの段階と利点について学びましょう。Mark Harrisが、製品開発および生産プロセスを合理化し、効率性を最大限に高めるヒントを共有しています。
記事を読む
RF回路設計とはどのようなものか?
RF回路設計とは何か、RF PCBの設計とレイアウトを成功させるにはどうすればいいのかについて詳細を知る
記事を読む
回路設計とは
最低限の労力で最適なPCBレイアウトを作成しましょう。回路設計の基本原則とおすすめの方法です。
記事を読む
Pagination
First page
« First
現在のページ
1
ページ
2
ページ
3
ページ
4
ページ
5
ページ
6
Next page
››
Last page
Last »
他のコンテンツを表示する