PCB配線

PCBの配線では、コンポーネント間の銅箔の接続を行います。最適な配線を行うことで、シグナルインテグリティー、低クロストークと低EMIを確保できます。PCBの配線や配線ルール、信号規格の遵守に最適なPCBレイアウト用ソフトウェアについては、当社のリソースライブラリをご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
BGAルーティングをネックダウン・トレース幅を使用して簡素化 BGAルーティングのための安全なネックダウントレース幅の簡素化の使用 1 min Blog BGA(ボールグリッドアレイ)にルーティングしようとした回数はどれくらいですか?クリアランスやトレース幅の制約によって阻止されたことはありませんか?トレースを細くする計算は可能ですが、安全な電流容量を維持しながらこの種の作業を特に得意とするのはコンピュータです。Altium Designer®のネックダウン機能を活用して、ルールや幅のサイズを調整するプロセスを中断することなく、BGAに効果的にルーティングする方法を学びましょう。 クリアランスやトレース幅の制約のためにBGAをトレースできないと、設計プロセスが大幅に遅くなり、ルーティングを停止してルールやPCBトレース幅のサイズを調整する必要があります。BGAルーティング内の狭いスペースは、それ自体で扱うのがかなり難しいです。それにPCBトレースの幅を変更する必要があると、さらに時間がかかります。ボードのルーティングに多くの時間を費やしているので、トレース幅を調整するために停止することなく、連続したプロセスを持つことが特に重要です。しかし、それをどのように制御できるでしょうか? 強化されたBGAルーティングのためのネックダウンの活用方法 ネックダウンは、トレースルーティングを狭いクリアランスで行うために、PCBトレースの幅をルールの制約内でより小さな幅に縮小するプロセスです。通常、ネックダウンはパッドサイズからトラック幅サイズへのパーセンテージ幅変更です。しかし、エリアに入るか出るときにトラックからトラックへのサイズ削減を設定することも可能です。 任意のPCB設計には、設計を安全なパラメータ内に制約する一連のPCBトレースルールがあります。これらのルールの1つがルートのトラック幅を定義します。このルールとクリアランス制約ルールは、通常、トラックがBGAに入ることを制限します。これを解決するために、ルーティングモードを終了し、そのBGA内に収まるようにルールを変更します。明らかに、トレースルーティングを行っているときに理想的ではありません。BGAに入ると出るときに自動的にトラック幅を変更するシステムが欲しいです。これがトラックがネックダウンする場面で役立ちます。 PCB設計ルールの幅は、BGAのスペース制約を満たすためだけに変更されるべきではありません。これは、設計の残りの部分に影響を与えるからです。代わりに、幅の縮小ルールは、現在の電流容量を維持できる幅で、BGAエリアにのみ制限されるべきです。これは、以下に示すように、Altium Designer ®の背景で、BGAの周りに生成されたエリアに特に設定されたPCBトレース幅ルールを設定することによって行うことができます。 BGAの周りにルームを配置することで、そのルームに対してのみルールを変更できます Altium Designerで中断なくルーティング Altium Designerを設定して、事前に定義されたプリント基板エリアに入るとPCBトレース幅が自動的に縮小するようにすることができます。ルーティングがBGAのエリアに入ると、PCBトレース幅はそのエリアのトラック幅ルールに合わせて自動的に縮小します。これは、BGAの複数のパッド間をルーティングして内側のパッドに接続する場合に特に重要ですが、トラックの幅がパッドに到達するには大きすぎる場合です。 この時短機能により、BGAの制約を満たすためにPCB設計ルールを停止して変更することなく、ボードのルーティングを継続的に行うことができます。 PCBトレース幅のネックダウンを Altium Designerでどのように活用するかをもっと学びたいですか?今すぐ私たちの無料ホワイトペーパー Using Neck-Down 記事を読む
ピン、パーツ、およびDiff-Pairスワッピングでルーティングを簡素化 ピン、パーツ、およびディフペアの交換でルーティングを簡素化 1 min Whitepapers PCB設計で部品を配置する際、配置によっては接続が互いに交差することがよくあります。少数の交差接続に対しては、他の層へのビアやわずかに長いトレースルーティングを使用することができますが、下図のような多数の交差がある場合、ルーティングが非常に困難で時間がかかることになります。 より複雑なルーティングで交差数が多い場合、PCB設計者は通常、交差接続の数を減らすためにデバイスピンとサブパートの入れ替えを行います。ピンまたは部品の入れ替えはPCB内の交差を排除しますが、その変更は回路図にも反映されなければなりません。この論文では、ピン、サブパート、および差動ペアの入れ替えを簡単に管理し、交差接続を減らすことで最適なルーティングを実現し、回路図とPCBルーティングの設計同期を維持する方法について説明します。 多くの交差接続を持つPCB 導入 最適な部品配置は、交差接続ラインを最小限に抑える上で非常に重要です。しかし、交差を完全に避けることはできません。多数の交差接続があると、PCBのルーティングが非常に困難で時間がかかる作業になります。PCB設計者は、電気的に可能な限り、あるデバイスピンから別の適格なデバイスピンへネット割り当てを入れ替えることが一般的です。同様に、共通パッケージ内のサブパーツも交差接続を減らすために入れ替えることができます。 ピン入れ替えは、2つの異なる物理ピンのネットを入れ替えても設計の電気機能に悪影響を与えないという事実に基づいています。基本的な例としては、抵抗器の2つのピンがあります。抵抗器のピンには固有の極性がないため、交差を排除するためにピンを自由に入れ替えても、意図したとおりに機能します。 もう一つの実用的な例としては、特定の信号が各ピンに厳密に割り当てられているわけではない高ピン数コネクタがあります。コネクタ上の多くのピンを交換できる柔軟性を持つことで、いくつかのクロスオーバー接続を排除できる可能性があります。ピン交換に最も適したコンポーネントタイプは、適用可能な電圧バンク内でユーザーが定義可能なI/Oピンを持つFPGAデバイスであり、必要に応じて自由にピンを再割り当てできます。 サブパート交換では、共通のパッケージ内の類似部品が交換されます。例えば、LM6154クアッドオペアンプICには、単一のパッケージ内に4つの別々で同一のオペアンプがあります。したがって、オペアンプC(ピン8、9、10)をオペアンプA(ピン2、3、1)と交換して、同じ機能を維持しながらクロスオーバー接続ラインを排除できます。サブパート交換は時々「ゲート交換」と呼ばれ、SN74S02NクアッドNORゲートパッケージ内の4つの個別ゲートが自由に交換できることを意味します。 デバイスピンおよびサブパート交換は、PCBグラウンディングにおけるクロスオーバー接続の全体数を大幅に削減するのに大いに役立ちます。デバイスピンまたはサブパートの交換を成功させるには、どのピンが交換可能であるかを事前に定義する必要があります。さらに、プリント基板PCB設計内でピンまたは部品の交換が行われたら、回路図を更新して変更を反映させ、PCBレイアウトと同期させる必要があります。それらを同期させないと、致命的なエラーにつながる可能性があります。 ピンおよび部品の交換 ピンまたは部品の交換は、一般的に3つのステップで行われます:交換データの設定、ピンまたは部品の交換の実行、最後に、交換の更新と回路図の同期化です。 交換グループの設定 交換グループは、自由に交換できるピンを定義します。特定の交換グループ内の任意のピンは、同じグループ内の他のピンと交換できます。交換グループの定義は、通常、シンボルライブラリレベル、回路図レベル、またはPCBドキュメント内で一度だけ行う作業です。Configure Pin Swappingパネルを使用して、設計プロセスの任意の時点で任意のコンポーネントまたはコンポーネントインスタンスに対して交換グループを定義できます。差動ペアおよびサブパーツの交換に対しても同様に交換グループを定義できます。図は、交換グループが簡単に定義できることを示すスクリーンショットです。 バンク番号に従ってFPGA I/Oピンのグループを定義 ピンまたは部品の交換の実行 スワップグループが定義されると、ピンのスワップ、差動ペアのスワップ、またはサブパートのスワップをPCB設計プロセスドキュメント内で対話的に実行できます。対話的なスワップ機能を呼び出すには、選択した対話的なピンスワップに従って、ツール > 記事を読む
PCB設計ワークフローの幅と深さ PCB設計ワークフローの幅と深さ 1 min Whitepapers ルーティングプロセスは、レイアウト作業で最も時間がかかる作業のままですが、Altium Designerのインタラクティブルーティング技術により、密集したボードレイアウトの設計がはるかに容易になります。 現代のプリント基板は、幅広い技術的課題に対処する必要があります。PCB設計ソフトウェアには、設計エンジニアが生産性を維持しながら、新しい設計が完全に製造可能であることを保証するのに役立つツールが含まれている必要があります。先進技術を作成する設計者は、生産性を維持し、先進的な設計を作成するために、PCB設計ワークフローでインタラクティブルーティングツールに依存しています。最高のインタラクティブルーティング機能を探している場合は、業界唯一の完全統合PCB設計ソフトウェアプラットフォームであるAltium Designerの包括的な設計ツールスイートを使用する必要があります。 ALTIUM DESIGNER 単一のアプリケーションで完全な設計ツールセットを備えたプロフェッショナルなPCB設計プラットフォーム。 ほとんどの設計において、ルーティングはPCBレイアウトプロセスで最も時間がかかる作業です。多年にわたるPCBの技術進化に伴い、ルーティングソフトウェアもそれらの要件をサポートするために進化してきました。Altium Designerのインタラクティブボードレイアウトルーティング環境は、任意のトポロジーだけでなく、HDI/BGAブレイクアウト、フレックス、リジッドフレックス設計にも対応しています。 Altium Designerは、標準的なルーティング要件のサポートを提供するだけでなく、インタラクティブなルーティング機能を備えており、PCBを作成する際に複数のトレースを迅速にルーティングすることが容易になります。さらに一歩進んで、高速PCBの信号整合性をチェックし、外部シミュレータを使用せずにこれらを行うことができます。Altium Designerのインタラクティブなルーティング機能は、生産的なPCB設計ワークフローを作成するのに役立ちます。 オートルーターからインタラクティブルーティングへ 年月を経て、設計とレイアウトの際に生産性を保つための多くのツールが開発されてきました。オートルーターは、コンポーネント間のトレースを自動的に配置するための最もよく知られたツールの一つです。しかし、これらの機能はしばしばクリーンアップを必要とし、正しく使用されない場合には作業を増やすことになることがあります。 このため、デザイナーがルーティング結果をよりコントロールできるように、オートインタラクティブルーティング機能(単にインタラクティブルーティングとも呼ばれます)が開発されました。これらのツールは、ネットのグループに同じセットの設計制約を適用し、デザイナーはソースとロードの間のトレースのためのウェイポイントを設定できます。インタラクティブルーティングエンジンが隙間を埋め、ルーティングが完了するとクリーンアップが少なくなります。 インタラクティブルーティングで生産性を保つ 最先端のルーティングツールは、インタラクティブルーティングを使用して、プリント基板上のトレース群を迅速にルーティングします。インタラクティブルーティングは、高速デジタルインターフェースで通常使用されるような、ネット群に同じルーティング経路とルールを適用することで、生産性を維持するのに役立ちます。オートルーターと比較して、インタラクティブツールは結果に対するより多くの制御を提供し、クリーンアップが少なくて済みます。 インタラクティブルーティングは、設計者が自動化されたプロセスを制御できるようにするため、オートルーティングを大きく進化させたものです。 オートルーティングとインタラクティブルーティングの違いについてもっと学びましょう。 すべてのインタラクティブルーティング機能が同じように作られているわけではなく、一部の設計プラットフォームには単純なオートルーターを超えるものがほとんど含まれていません。Altium 記事を読む