シミュレーションと解析

シミュレーションと解析は、回路図ではプリレイアウト、完成した物理設計ではポストレイアウトで実行できます。Altium Designer には、SPICEシミュレータ、反射やクロストークのシミュレータ、サードパーティのフィールドソルバとの統合など、両方の領域で成功するためのリソースが含まれています。シミュレーションツールの使用や設計における電気的挙動の解析については、ライブラリのリソースをご覧ください。

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
Circuit Board layout 新次元のPCBシミュレーション 1 min Newsletters Judy Warner: Avishtech社を立ち上げるきっかけとなった要素は、技術的にはどのようなことだったのでしょうか? Keshav Amla: 簡単に答えると、PCBのシグナルインテグリティ、製造可能性、信頼性について、既存の電気設計および開発方法には深刻な弱点がいくつもある、と気付いたとことです。シグナルインテグリティについて言えば、損失のモデリングのお粗末さに非常に驚かされました。しかし、それよりもっと大きな不安の種は、製造可能性と信頼性の問題を予測できないことでした。古い手法では、再設計を繰り返し試作基板を何度も再作成するのが基本でした。スタックアップ設計段階で実際の挙動を予測するために必要な技術を構築する上で、自分たちこそが適任者だと感じました。 Tarun Amla: 今の話に少し付け加えると、重要な点は、1つですべての目的を満たそうとする試作品はうまく機能しないということです。それぞれのスタックアップは違うものです。試作基板で一連のテストに合格したとしても、実際には、その試作基板で使われた特定の設計が機能したというだけです。一般に、設計技術者は「ワーストケース」の試作品を作成できると考えられていますが、実際にはそのようなものは存在しません。 Judy Warner: Avishtech社が提供しているツールセットとサービスにはどのようなものがありますか? Tarun Amla: 弊社は、設計、およびシミュレーション ソフトウェアであるGaussシリーズを提供しています。Gauss 2Dは、伝送線路のシグナルインテグリティシミュレーションのための2D電磁界ソルバー、および周波数依存性解析ツールです。Gauss Stackは、信頼性、製造可能性、シグナルインテグリティを予測するためのPCBスタックアップ設計、およびシミュレーションツールです。 また今回、弊社はGauss Synthesis製品を発表しました。これにより、弊社のツールセットの機能をオンライン、オンデマンドで必要に応じて利用できます。特定のツールセットの使い方を学ぶ必要も、結果の解釈方法を判断する必要もありません。単に必要な入力データを付けて発注し、結果と専門家のフィードバックが記載されたレポートを受け取るだけです。 記事を読む
Altium Designerにおける電源設計 Altium Designerにおける電源回路図設計 1 min Blog 電子ラボ用のベンチ電源を設計しているのか、IoT製品用の組み込み電源を設計する必要があるのかにかかわらず、世界クラスのPCB設計ツールが必要になります。Altiumは、電源のフロアプランを助け、強力な回路設計およびシミュレーション機能を備えた詳細な回路図を作成するお手伝いをします。Altium Designerの回路設計機能を使用すると、新しい電源設計を作成しシミュレートすることができます。また、コンポーネントの調達と新しい電源の製造準備に必要な機能も備えています。他のPCB設計プラットフォームでは、これほど多くの機能を成功に導くために提供しているものはありません。 ALTIUM DESIGNER 回路設計機能を強力なPCBエディタおよび電源設計のためのシミュレーション機能と統合したプロフェッショナルなPCB設計ソフトウェアプラットフォーム。 すべての回路基板には電源が必要です。低レベル信号を扱う場合、電源設計戦略には集積回路を使用することができますが、高出力設計には、必要な電力出力と調整を提供するために、個別のコンポーネントが必要です。複数のコンバータとLDOを使用したシンプルなレギュレータを作成する場合でも、高電流出力の設計を行う場合でも、電源回路を作成するためには強力な回路図エディタが必要です。Altium Designerの設計ツールを使用して新しいボードのためにどのように電源設計を行うか、包括的な電源設計ガイドをご覧ください。 電源設計の計画 電源および調整戦略にはいくつかの段階があり、新しい設計を計画する際には入力電源を考慮する必要があります。AC-AC変換は非常にシンプルで、ステップアップまたはステップダウンの調整のみが関与し、効率を高めるために電力補正係数回路が可能性として含まれます。AC-DC変換の電源を計画している場合、電源設計は以下のブロック図のようになります。 AC-DC電源設計のブロック図。 AC入力をDCに変換したら、典型的なDC-DC変換および調整戦略に従って、所望の電流で安定したDC電圧を出力できます。DC-DC変換には、適切な電源トポロジの実装が必要です。最も一般的なトポロジは、バック、ブースト、およびバックブースト変換ですが、関連する電源トポロジを使用してDC-DC変換および調整を行うことができます。以下に示されているフローチャートは、安定したDC電力をコンポーネントに供給するために、調整されていないDC電源と共に使用されることも注意してください。 DC-DC電源設計ブロック図。 レギュレータの各段階は、各機能を提供する離散コンポーネントおよび/または集積回路から構築する必要があります。パッシブと電力レギュレータICから電源を作成することも、離散コンポーネントを使用することもできます。異なる段階を隔離して、高電圧が出力ポートに到達するのを防ぐことができ、これは重要な安全上の危険を排除します。電力変換および調整戦略を決定したら、コンポーネントを選択し、回路図を作成する必要があります。 新しい電源のための回路図設計 上記の変換および調整ステージはよく知られており、多数のメーカーから参照設計として入手可能です。AltiumのPCBデザインブログでは、さまざまなレギュレーターとコンバーターの設計例も多数見つけることができます。Altium Designerの回路図エディタを使用すると、Manufacturer Part search panelでボードに必要なコンポーネントを見つけることができます。これらのコンポーネントには、検証済みの回路図シンボル、PCBフットプリント、3Dモデルが含まれており、更新された数量と価格の情報もあります。 新しいスイッチングレギュレーターを構築するときは、最高の回路図エディタを使用して新しいデバイスのすべての側面を設計およびシミュレートする必要があります。 記事を読む