PCB Design for Consumer Electronics

On the surface, consumer electronics can seem like the easiest market to design for. After all, it’s all about the next cool personal electronic gadget looking cool and working with the latest user interface, right? But if you’ve ever designed and released electronic products for consumers before, you know all too well how difficult it can really be. While keeping marketing and graphic design people happy with your design, you also have to figure out how to make sure this new product is going to pass regulatory requirements for safety, EMC, and environmental laws. At the same time, feature creep, last minute changes, and unavailable components can cause fatal delays to the product launch, leaving the market wide open for competitors.

Filter
見つかりました
Sort by
役割
ソフトウェア
フィルターをクリア
高速設計における信号反射の理解 高速設計における信号反射の理解 1 min Blog シミュレーションエンジニア シミュレーションエンジニア シミュレーションエンジニア はじめに 信号反射とインピーダンスマッチングに関する工学は、高速デジタルシステムの設計に関連する基本的なトピックの一つです。高ビットレートのデジタルシステムの場合、ビットの状態「0」と「1」についての情報が矩形波信号の形で送信されるとき、上昇(または下降)エッジの立ち上がり(または下がり)時間は、バイナリ信号の周波数に対して無視できると想定されます。しかし実際には、デジタル信号が無限に速く上昇または下降することはありません。立ち上がり(および下がり)時間は、送信機、受信機のパラメーター、および伝送路の物理的特性を含む信号経路のパラメーターによって決定されます。 高速システムの場合、立ち上がり時間と下がり時間は1ns以下と短くなることがあります。デジタルシステムのバイナリ信号の周波数は数GHzに達することがあり、比較的矩形の形状を維持するためには、上昇および下降エッジはビット期間の一部であるべきです。 電磁波の伝播速度(伝送線路内の電圧と電流の伝播)は、伝送線路の種類や基板の種類など、いくつかの要因に依存します。例えば、FR4基板とマイクロストリップ伝送線路の場合、伝播速度は約160Mm/s(メガメートル毎秒)または525Mft/s(メガフィート毎秒)です。もしエッジの立ち上がり(または立ち下がり)時間が例えば200psであれば、立ち上がり(または立ち下がり)エッジは伝送線路を立ち上がりまたは立ち下がり時間中に32mmまたは1.25インチ移動します。 信号形状を保持するかどうかは、PCBに沿った伝送線が、立ち上がり(または立ち下がり)エッジが移動する距離と比較して長さがある場合に、インピーダンスの連続性を維持し、受信側で適切な終端を行うかどうかに依存します。非常に短い接続やデジタル信号の立ち上がり(立ち下がり)時間が遅い場合、ここで説明されている反射の現象は観察されないかもしれず、スキップされる場合があります。経験則として、信号エッジが移動する距離(つまり、伝播時間と伝播速度の積)が伝送長の10%以上である場合は、出力、入力、および伝送線を適切にマッチングすることが求められます。この手順はインピーダンスマッチングと呼ばれ、PCB上のトレースの設計および抵抗器で構成されるマッチングネットワークを含みます。 インピーダンスマッチングと抵抗マッチング インピーダンスマッチング条件を決定する関係はよく知られています。TXの出力インピーダンスが受信機のインピーダンスの複素共役であり、送信機と受信機を接続する経路の抵抗が送信機と受信機の実部と同じである場合、信号経路はマッチしています。デジタルシステムの実際のケースでは、送信機または受信機経路の複素共役インピーダンスマッチングネットワークを実装することによってマッチングは行われません(これは、任意の虚数インピーダンス成分をキャンセルするために信号線にインダクタとキャパシタを追加する必要があります。また、このタイプのマッチングは通常狭帯域なのでデジタルシステムでは実用的ではありません)。 一般的な実践は、送信および受信ICの抵抗部分のみをマッチさせ、伝送線の特性インピーダンスを純粋に抵抗的にすることです。この場合、必要なマッチングを提供するためには抵抗器のみが必要です。例えば、ドライバー出力に直列抵抗器を配置することは、送信機を伝送線にマッチさせる可能性のある解決策の一つです。受信機では、グラウンドへの並列抵抗器を使用できます(または、差動ペアの場合 - 差動ペアを形成するトレース間に抵抗器)。受信機の終端トポロジに関連するいくつかの例は、Altium Designerで利用可能なSignal Integrityツールから取られた図1に示されています。 図1: Altium Designer シグナルインテグリティツールで利用可能な終端トポロジー デジタルシステムにおける信号反射の例 この章では、50Ωシステムに基づいている反射波形との信号マッチング例について議論します - ラジオ周波数設計に共通のシステムですが、このセクションで提示される関係は、他のインピーダンスプロファイルを使用するデジタルシステムや、差動ペアによって信号が送信される場合にも適用されます 記事を読む
シグナル・インテグリティ記事 4 Altium Designer 24に基づくシグナル・インテグリティの原則 1 min Blog シミュレーションエンジニア シミュレーションエンジニア シミュレーションエンジニア 高速および信号完全性への導入 デジタルシステムは、現代の電子機器の基本的な領域の一つです。高効率プロセッサーやFPGA、高速ADCコンバーターとDSPやFPGAを使用する広帯域データ取得システムなど、デジタルシステムの進歩は、さまざまな集積回路やモジュール間の相互接続を含むPCBを特に、電子設計に異なるアプローチを要求します。このアプローチは、現代の高速電子機器で使用される信号の種類に関連しています。 RS232やI2Cのような基本的でよく知られたインターフェースは、データスループットが秒間数百キロビットに限定されていますが、PCIeやUSB3.0のようなインターフェースを介して高速システムやモジュール間の相互接続は、秒間数ギガビット以上のデータレートを持つことがあります(これが高速システムや高速設計という用語の由来です)。 さらに、現代の高データレート相互接続のほとんどは、少数の信号線のみを使用するシリアル信号を使用します。そのようなシリアル線の一つが図1に示されています。いくつかの標準では複数の線が必要であり、ほとんどの場合、これらの線は差動ペアとして作られます。そのような標準の良い例はPCIeやJESD204です。 図1:シリアル高データレートリンク;送信機、受信機、および伝送路のインピーダンスマッチングは信号完全性にとって基本的です 高速設計の原則は、信号データレートとこの信号によって占められる帯域幅との間に直接的な関係があるため、無線周波数設計に似ています - データレートが高いほど、そのような信号によって占められる帯域幅も広くなります。また、高速信号の立ち上がり時間と立ち下がり時間は、しばしば1ns以下で、スイッチング周波数は数GHzを超えることがよくあります。このような信号は、SPI、I2C、RS232などの低速規格で使用される信号とは異なる方法でPCBを伝播します。信号の帯域幅を念頭に置き、送信機(例:ADCのJESD204Bインターフェース)から受信機(例:FPGAの入力ピン)まで、データリンクの忠実度が維持されるように、PCBを正しく設計するためには、重要な注意が必要です。最も一般的には、LVDS(低電圧差動信号)規格が、高データレートモジュールやシステムを相互接続するため、または高速信号の標準化された仕様(例:電圧変動、論理レベル、インピーダンスなど)を提供するために使用されます。 高速信号の性質は、PCB上で伝送されるリンクと信号の高忠実度を保証するために、PCBと回路図の異なる設計ツールを必要とします(設計に費やされる時間の削減とともに)。信号の高忠実度は、信号の品質特性に関連するもので、信号整合性と呼ばれ、PCB/SCHの開発中だけでなく、専用ツールを使用したラボでの信号測定によっても検証できる伝送信号の多数のパラメータから構成されます。 Altium Designerは、高速プロジェクトに関連するすべての活動をサポートし、例えば以下のような多数の機能を提供することにより、信号整合性の制御手段を提供します: 回路図とPCBでの差動ペアの定義の可能性; 長さマッチングを伴うPCBエディタでの差動ペアのルーティング; 差動および単線信号線の制御インピーダンストラックの定義; 差動ペア内およびバス内での信号線の長さ調整; 信号整合性と高速のためのシミュレーションツールとDRCチェック; 消散因子、誘電率定数、銅の粗さを含むインピーダンスプロファイルでのPCBスタックアップの定義の可能性; コンポーネントの伝播遅延の定義の可能性 など。 これらの機能は、信号完全性に関連する設計エラーを軽減し、設計フェーズでの柔軟性を提供し、プロトタイピングコストを削減し、製品の市場への納品を加速させるのに役立ちます。 記事を読む
シグナル・インテグリティ_記事 2 高速PCB設計:信号整合性、EMI軽減、および熱管理の確保 1 min Blog シミュレーションエンジニア シミュレーションエンジニア シミュレーションエンジニア 高速信号の整合性は、現代のPCB(プリント回路基板)設計において重要であり、性能、信頼性、およびコンプライアンスに影響を与えます。高速PCBを設計するには、クロストーク、電磁干渉(EMI)、および熱管理などの信号整合性の問題を管理する必要があります。この記事では、クロストーク、グラウンドプレーン戦略、電磁干渉(EMI)、および熱管理を含む高速信号整合性のいくつかの重要な側面を探り、実用的な洞察と例を提供します。これらの概念をさらに深く掘り下げ、拡張された戦略と詳細な例を提供しましょう。 電磁結合とクロストーク 電磁結合:隣接するトレースの信号は、互いに電磁場を誘導することができ、干渉を引き起こします。この現象は電磁結合として知られており、高い周波数でより顕著になります。例えば、密接に配置された高速データラインを持つPCBを考えてみましょう。あるトレースが高周波のクロック信号を運び、隣接するトレースが敏感なデータ信号を運ぶ場合、クロック信号によって生成された電磁場はデータ信号にノイズを誘導し、データエラーを引き起こす可能性があります。 トレースの近接性:信号トレースが互いに近いほど、クロストークの可能性が高くなります。この干渉を減らすためには、トレース間に適切な間隔を保つことが重要です。例えば、高速イーサネットPCBでは、ペア内の信号整合性を確保するために差動ペアが密接に配線されます。しかし、異なるペア間ではクロストークを防ぐために十分な間隔が保たれます。 高周波信号:高い周波数は、より強力な電磁場を生成し、クロストークを悪化させる可能性があります。信号周波数が増加するにつれて、適切なレイアウトと間隔を確保することがますます重要になります。例として、RF回路設計では信号がギガヘルツ周波数に達することがあります。RF信号トレースを他のデジタルまたはアナログトレースから分離して干渉を防ぐために特別な注意が必要です。 不十分なグラウンディング:不適切なグラウンディングはクロストークへの感受性を高めます。固定された連続的なグラウンドプレーンは、リターン電流のための低インピーダンスパスを提供し、信号干渉のリスクを減少させます。例えば、多層PCBでは、信号層の直下にグラウンドプレーンが配置されます。これにより、リターン電流が明確なパスを持ち、クロストークの可能性を最小限に抑えることができます。 高速デジタル通信分析において使用されるアイダイアグラムは、開いたアイパターンを通じて信号整合性を示し、色のグラデーションが信号密度と性能を示しています。 EMI軽減技術 適切なPCBレイアウト: トレースのルーティングを最適化し、ループ領域を最小限に抑え、グラウンドプレーンを効果的に使用することで、EMIを大幅に削減できます。例えば、高速デジタル設計では、重要な信号トレースをグラウンドプレーンの間に挟まれた内部層にルーティングします。これによりループ領域が最小限に抑えられ、EMIに対する効果的な遮蔽が提供されます。 フィルタリング: フェライトビーズやキャパシタなどのフィルタを実装することで、高周波ノイズを抑制し、EMIを減少させることができます。例えば、フェライトビーズは電源ラインに配置され、高周波ノイズをフィルタリングし、それが敏感なアナログ回路に伝播するのを防ぎます。 コンポーネントの配置: 騒音の多いコンポーネントを敏感なエリアから離して配置し、適切な遮蔽を確保することで、EMIを軽減することができます。例えば、混合信号PCBでは、アナログコンポーネントを一方の側に配置し、デジタルコンポーネントを反対側に配置し、その間にグラウンドプレーンを配置して隔離を提供します。 金属シールド: 騒音の多いコンポーネントを金属シールドで囲むことで、EMI放射を防ぎ、近くの敏感な回路を保護できます。例えば、PCB上のRFモジュールは、電磁放射を含むためにしばしば金属シールドで覆われ、隣接する回路との干渉を防ぎます。 グラウンディングとボンディング: 適切なグラウンディングとボンディングを確保することで、リターン電流の明確な経路を提供し、グラウンドループの可能性を減少させることにより、EMIを最小限に抑えます。例えば、グラウンディングストラップやビアを使用して異なるグラウンドプレーンを接続し、PCB全体にわたってリターン電流の低インピーダンス経路を確保します。 フィルタ設計: 容量性および誘導性フィルタを使用することで、望ましくない周波数を効果的にブロックし、EMIを減少させ、信号の整合性を向上させます。例として、入力ラインに使用されるローパスフィルタは、高周波ノイズをフィルタリングし、敏感なコンポーネントに到達する信号の周波数のみを確保します。 記事を読む
SI 記事 1 PCBデザイナーのための究極の高速信号整合性入門 1 min Blog シミュレーションエンジニア シミュレーションエンジニア シミュレーションエンジニア シグナルインテグリティの基礎 シグナルインテグリティとは、PCB(プリント回路基板)を通過する電気信号の品質と信頼性を指します。高速PCB設計において、シグナルインテグリティを維持することは重要であり、わずかな信号の歪みでもデータの破損、通信エラー、全体的なシステムの故障につながる可能性があります。インピーダンスの不一致、クロストーク、信号の反射、電力の変動などの要因がシグナルインテグリティに大きな影響を与えるため、慎重な設計と分析が必要です。 PCBにおけるインピーダンスの理解 PCB設計の文脈において、インピーダンスとは、交流が回路を通過する際に遭遇する抵抗のことです。このインピーダンスは、トレースの幅や厚さ、これらのトレースの間に使用される誘電体材料の種類、PCBの層の全体的な構成など、さまざまな要因によって形成されます。高速PCBアプリケーションでは、信号の反射を避け、信頼性の高いデータ伝送を保証するために、一定のインピーダンスを維持することが重要です。 高速PCB設計におけるインピーダンスの一貫性を確保するために、いくつかの戦略的な技術が適用されます: 制御インピーダンストレース: エンジニアは、目標インピーダンス値を達成するために、トレースの幅や間隔といった幾何学的特性を設計します。高度なシミュレーションツールが使用され、これらのインピーダンスレベルを生産前にモデル化し検証します。例えば、特定の信号トレースに対して50オームのインピーダンスを確立することが設計要件となる場合があります。シミュレーションを通じて、トレースの寸法はこの仕様を一貫して満たすように微調整されます。 差動ペア: 高速信号伝送において、信号はしばしば差動ペアとして配線され、これは2つの補完的な信号が同時に送信されることを意味します。この構成はインピーダンスを安定させるだけでなく、ノイズの軽減にも役立ちます。USB 3.0技術において差動ペアが一般的に使用され、信号の整合性を向上させ、電磁干渉を減少させます。 材料選択: 基板材料の選択は、インピーダンス安定性に大きな影響を与えます。一貫した誘電特性を持つ材料を選択することで、PCB全体でインピーダンスが変動しないようにします。例えば、安定した誘電定数で知られる標準のFR4材料は、回路基板全体でインピーダンスの一貫性を維持するためによく選ばれます(トレースが長すぎない場合)。 Altium DesignerのPCBスタックアップエディターに統合された電磁場ソルバー 反射と信号終端 信号反射は、信号がその経路に沿ってインピーダンスの不一致に遭遇したときに発生し、信号の一部がソースに向かって反射することを引き起こします。この反射は信号を歪ませ、データエラーを引き起こし、全体的な信号の整合性を低下させる可能性があります。インピーダンスの不一致の一般的な原因には、トレース幅の急激な変化、ビア、コネクターが含まれます。 終端技術は、伝送線のインピーダンスを負荷と一致させ、反射を最小限に抑えるために使用されます: 直列終端: これは、信号源の近くに抵抗を直列に配置することを含みます。これは短いトレースに対して単純で効果的です。例えば、高速メモリインターフェースでは、トレースインピーダンスに一致させ、反射を防ぐために33オームの直列抵抗が使用されるかもしれません。 並列終端: 記事を読む