PCB Design and Layout

Create high-quality PCB designs with robust layout tools that ensure signal integrity, manufacturability, and compliance with industry standards.

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
GaNおよびSiC半導体の成長見通し GaNおよびSiC半導体の成長見通し 1 min Blog 購買・調達マネージャー 購買・調達マネージャー 購買・調達マネージャー 半導体業界は、窒化ガリウム(GaN)と炭化ケイ素(SiC)で大いに盛り上がっています。GaNとSiCが、長年のシリコンの独占を覆す準備ができているとのことです。電気自動車、再生可能エネルギー、消費者向け電子機器を含む主要産業に既に影響を与えている、効率と性能の大幅な向上について話しているので、注目されています。 これがなぜ大きな話題なのか?よりコンパクトで、強力で、エネルギー効率の高いデバイスに向かって競争が激化する中、古いシリコンの働き手ではもはや役不足です。GaNとSiCは?それらは、電力システムを超充電し、効率を向上させ、10年前には夢にも思わなかった革新を解き放つ可能性を持つ新しい才能です。これらを反映して、GaNとSiCの市場は急速に成長しています。 市場規模と成長予測 数字を見てみましょう。 Fact.MRによると、GaNおよびSiC半導体市場は、2024年の推定$1.4 billionから2034年には$11 billionに拡大すると予測されており、複合年間成長率(CAGR)は 22.9%になるとされています。 Future Market Insights(FMI)はさらに楽観的な見通しを提供しており、2024年から2034年にかけてのCAGRが 27.1%で成長し、市場規模が$23.7 billionに達すると推定しています(図1参照)。 ワイドバンドギャップ材料とは何か? ワイドバンドギャップ(WBG)材料(主にGaNおよびSiC)は、半導体技術の最前線にあります。これらの材料は、さまざまなディスクリートコンポーネント、パワーモジュール、および 集積回路を作成するために使用されます。"ワイドバンドギャップ"という用語は、これらの材料の価電子帯と伝導帯の間の大きなエネルギーギャップを指し、通常はシリコンの1.1 eVよりも高い3 eV以上です。 ワイドバンドギャップ材料の利点 WBG材料の大きな利点の一つは、ブレークダウンが発生する前にはるかに強い電場に耐える能力です。GaNとSiCは、シリコンよりも約10倍高いブレークダウン電場を誇ります。この特性と広いバンドギャップを組み合わせることで、これらの材料から作られたデバイスは、従来のシリコンベースの半導体よりも高い電圧、温度、周波数で動作することができます。 記事を読む
チップレット 2025年はチップレットの年となるのか? 1 min Blog 購買・調達マネージャー 技術マネージャー 製造技術者 購買・調達マネージャー 購買・調達マネージャー 技術マネージャー 技術マネージャー 製造技術者 製造技術者 2025年に向けて、半導体業界はチップレット技術への大きなシフトの初期段階にあります。2025年がチップレットが市場を支配する年になるわけではありませんが、この10年間の移行期の始まりを告げ、チップレットが電子設計と製造の顔を変えることになります。 この進化は、今年初めに議論したトレンドに基づいています なぜ将来の電子設計がチップレットベースになる可能性があるのか。チップレットのモジュラー機能は、パフォーマンス、経済性、柔軟性の向上という多くの利点を提供します。これらの利点は、電子業界が従来の一枚岩のチップ設計の限界に直面するにつれ、ますます重要になっています。 チップレットロケットシップは発射台に乗っています そして、最終カウントダウンが始まりました。チップレット市場は、業界を横断して高性能コンピューティングへの需要が増加することにより、爆発的な成長を経験する準備ができています。AI、データセンター、自動車、消費者向け電子機器への応用が先陣を切ります。 Market.us Scoopの推定によると、チップレット市場は2023年の30億米ドルから2033年には1070億米ドルに達し、複合年間成長率(CAGR)は42%に達すると予測されています(図1参照)。 上記のデータは、他の予測者と比較して実際にはかなり保守的です。例えば、 KBVリサーチによると、グローバルチップレット市場は2030年までに3730億ドルに達すると予想され、CAGRは76%になります。 マーケッツアンドマーケッツは、市場が2028年までに1480億ドルに成長し、驚異のCAGR 87%に達すると予測しています。これは図1に示されているものの2倍以上です。 2025年:チップレット採用の大きな年 2025年は、チップレット技術が有望なコンセプトから多くの産業で実用的な現実に移行する転換点となる可能性が高いです。いくつかの重要な要因が一致し、チップレットの採用を加速させ、革新と機会の完璧な嵐を生み出すことになります。 基準の成熟:インテルと他の業界リーダーによって確立された ユニバーサルチップレットインターコネクトエクスプレス(UCIe)標準は、2025年にはより広く採用されると予想されます。この標準は、メーカー間の相互運用性を促進し、チップレット統合を加速します。 投資の増加:主要な半導体企業は、チップレットの研究開発に多額の資源を割り当てており、数十億ドルの投資を行っているところもあります。多くの国の政府イニシアチブも、その戦略的重要性を認識してチップレットプロジェクトに資金を提供しています。 パッケージング技術の進歩:TSMCやIntelなどの企業は、チップレット用の先進的なパッケージング技術で大きな進歩を遂げています。これらの革新により、チップレットを複雑で複数のベンダーのシステムにより効率的に統合することが可能になります。 エコシステムの拡大:チップレットのエコシステムは急速に成長しており、EDA企業、ファウンドリ、そしてアウトソーシングされた半導体組立およびテスト(OSAT)企業がすべて、チップレット技術の進歩に貢献しています。 チップレットの普及への長く曲がりくねった道のり 2025年は重要なマイルストーンとなりますが、チップレットの普及は次の10年間にわたって徐々に展開されるでしょう。いくつかの要因がこの長期的な移行を推進することになります: 記事を読む
要件管理とは何か 要件管理とは何か? 1 min Blog 電気技術者 システムエンジニア/アーキテクト 電気技術者 電気技術者 システムエンジニア/アーキテクト システムエンジニア/アーキテクト 要件管理は、開発ライフサイクルを通じて要件を収集、優先順位付け、検証、およびテストするための構造化されたプロセスです。これにより、電子開発企業は製品要件を実装し、成功裏に協力し、コストのかかるエラーを削減することができます。 成功した製品は、明確に定義された一連の要件を満たしています。製品がシンプルであっても、要件は設計者によって知られており、 PCB設計レビューの間に意識的にチェックされます。より複雑なプロジェクトや大規模な範囲の場合、要件はしばしばSOWやより大きな製品文書で指定され、これらはレビュープロセスの一部となります。 複雑さは電子製品開発の常であり、要件管理は製品がビジネス、機能、安全、ユーザーエクスペリエンス、およびコンプライアンスの目標を満たすことを保証します。 要件とは何か? 要件は プロジェクト関係者によって定義された特定のニーズや機能です。例えば、電子製品には特定の電流容量をサポートできるPCB設計が必要かもしれません。その要件は、適切なコンポーネントの必要性、適切な熱管理、および業界標準への準拠といった二次要件を生じさせます。 要件収集は、期待される機能、性能、およびユーザーエクスペリエンスを概説する高レベルの要件から始まります。初期の要件は、クライアント、製品マネージャー、ビジネスアナリスト、またはシステムエンジニアによって提案されることがあります。開発チームは、プライマリ要件をより詳細なセカンダリ要件に分解し、プロジェクトの目標を達成するための機能と制約を指定します。その結果、要件を構造化された形式に整理し、ステークホルダーがそれらの関係と依存関係を理解できるようにする階層が生まれます。 プロジェクトの各要件は、回路図および/またはPCBレイアウト内の特定のオブジェクト、実行される特定のタスク、関連する文書および/または機能ブロック、およびコンプライアンスのために考慮される予想される条件を参照する必要があります。要件を単純なチェックリストとして考慮することは、しばしばナビゲートが難しい大規模な要件文書よりも扱いやすいです。 良い要件とは何か? 要件が有用であるためには、特定の基準を満たす必要があります。最も重要なことは、それがあいまいでないことです。不正確な要件は、誤解、期待の不一致、および時間の無駄を引き起こします。 その他の重要な特性には以下が含まれます: 必要性: それは製品およびビジネスの目標に貢献しますか? 達成可能性: それはプロジェクトの範囲と能力内で実装できますか? テスタブル:成功した実装を測定するための明確で具体的な基準はありますか? 電子製品開発のための要件管理 要件管理は協力的なプロセスです。要件の収集と管理は、プロジェクトに関わるマネージャー、電子設計者、電気エンジニア、機械エンジニア、およびその他のステークホルダーからの入力に依存しています。 また、協力を促進するプロセスでもあります。明確でよく理解され、合意された要件の包括的なセットは、さまざまな場所にいる能力が異なるチームが同じ目標に向かって作業することを可能にします。 記事を読む
BOM管理を通じたPCB設計の卓越 BOM管理を通じたPCB設計の卓越 1 min Blog PCB設計者 購買・調達マネージャー 技術マネージャー +1 PCB設計者 PCB設計者 購買・調達マネージャー 購買・調達マネージャー 技術マネージャー 技術マネージャー ITマネージャー ITマネージャー 効果的な部品表(BOM)管理は、PCB設計の卓越性の基盤として浮上しています。市場を横断する製品が新しい技術やより複雑なコンポーネントを利用するにつれて、BOMの開発と管理の役割は基本的なリスト作成タスクから複雑で戦略的に重要な仕事へと進化しています。このシフトは、初期概念から最終生産に至るまで、企業がPCB設計にアプローチする方法を再形成しています。 包括的でよく管理されたBOMは、PCBプロジェクトの中心的なハブとして機能し、製品のコスト、品質、市場投入までの時間に影響を与える情報を提供します。現代のBOMには、少なくとも正確なコンポーネント仕様、数量、メーカー部品番号、代替部品オプションが含まれているべきです。この情報により、設計チーム、調達部門、製造業者間の効果的なコラボレーションが可能になり、製品ライフサイクル全体での エラーを減少させるワークフローを合理化します。航空宇宙や医療などのミッションクリティカルな産業では、堅牢なBOM管理がさらに重要です。 高度なBOMツールの力 多くの現代のBOM管理ツールは、AIと機械学習の機能を取り入れており、部品の可用性とコストに関する予測分析、設計要件に基づいた自動部品選択、そして賢い変更管理の提案を提供します。さらに、クラウドベースのコラボレーションプラットフォームは、リアルタイムの更新、バージョン管理、すべての関係者のための中央集権的なデータアクセス、そして強化されたセキュリティを提供します。 そのような先進的なソリューションの一つが、クラウドベースの Altium 365アジャイル電子開発プラットフォームの一部であるAltium 365 BOM Portalです。BOM Portalは、現代のBOM管理システムで利用可能な最先端の機能を体現しています。このツールは、BOMの決定と品質保証を改善するための強化されたデータエンリッチメントを提供します。それは、製品のリリースを品質やコストを犠牲にすることなく加速する、エンジニアリングと調達間のシームレスな コラボレーションを可能にする共有環境を提供します。 供給チェーン管理の鍵:可視性 供給チェーンの可視性は、 BOM管理の重要な部分となっています。先進的なツールは、部品の可用性とリードタイムに関するリアルタイムデータを表示し、サプライヤーのパフォーマンスを追跡し、供給チェーンの中断リスクを評価することができます。この情報を持って、設計者と調達チームは、遅延や製造問題を最小限に抑えるために、より速く、より情報に基づいた決定を下すことができます。 BOM Portalの主な利点の一つは、BOMに直接サプライチェーンデータを インテリジェントに統合することです。ユーザーがポータルで自分のBOMを開くと、意思決定を合理化し、設計品質を向上させるための豊富な情報にアクセスできます。在庫および価格データは、 OctopartおよびIHS 記事を読む
サプライチェーン最適化 Altium 365 BOM Portal:設計エンジニアとサプライチェーン最適化にとってのゲームチェンジャー 1 min Blog PCB設計者 購買・調達マネージャー 技術マネージャー +1 PCB設計者 PCB設計者 購買・調達マネージャー 購買・調達マネージャー 技術マネージャー 技術マネージャー 製造技術者 製造技術者 多くの設計チームでは、スプレッドシートなどの手動方法を使用してPCB(プリント基板)プロジェクトの部品表(BOM)を管理することが一般的な実践です。しかし、これらの伝統的なアプローチには、設計プロジェクトの成功に深刻な影響を及ぼす可能性のある問題が満ちています。BOM管理に手動ツールに依存することは、生産の遅延、コストの増加、さらには非準拠または時代遅れの製品をもたらす可能性がある非効率性、リスク、および誤解を導入します。 手動BOM管理の課題 人為的ミスに弱い: スプレッドシートは柔軟性がありますが、人為的ミスに非常に弱いです。部品番号の誤り、数量の誤り、または古いサプライヤー情報などの単純なミスが、生産ラインのさらに下流でコストのかかる混乱を引き起こす可能性があります。これらの エラーは、多くの場合、大量の時間とリソースが投資された後に遅れて発見されます。 リアルタイムデータの欠如: 手動のBOMはリアルタイムのサプライチェーンデータを統合していないため、エンジニアや調達チームはしばしば、部品の可用性、価格、およびコンプライアンスに関する古い情報を使用して作業しています。この乖離は、予期しない不足、リードタイムの延長、またはプロジェクトのスケジュールと予算を乱す予期せぬ価格の上昇を引き起こす可能性があります。 非効率なコミュニケーション:静的ファイルを通じて管理されるBOMは、電子メールやその他のアドホックな方法で共有されることが多く、バージョン管理の問題やチーム間の誤解を招くことがあります。これにより、関係者が古いBOMを基に作業を進めることがあり、設計と調達の段階 間での不一致のリスクが高まります。 コンプライアンス管理の難しさ:REACHやRoHSのような規制基準を全てのコンポーネントが満たしていることを確認するのは、時間がかかる手作業です。自動追跡がなければ、チームは定期的にコンポーネントのコンプライアンス状態を確認する必要があり、製品承認の遅延や再設計を必要とする非コンプライアント部品の使用リスクがあります。 コンポーネントライフサイクルの追跡ができない:急速に進化する電子市場では、コンポーネントがすぐに時代遅れになったり、終了(EOL)状態になることがあります。手動方法では、コンポーネントがもはや実用的でなくなったときに自動的に警告する機能が提供されません。これにより、最後の瞬間の再設計や生産の遅延が発生する可能性があります。 反応的な問題解決:供給チェーンのリスクを積極的に監視したり、コンポーネントの問題を早期に対処する能力がなければ、チームはしばしば反応的なモードに追い込まれます。これにより、急いで決定を下すことになり、調達コストが高くなり、エンジニアが 適切な代替品を見つけるために慌てたり、期限を守るためにプレミアムを支払ったりすることで、製品品質が損なわれる可能性があります。 これらの問題は、設計および製造プロセスにおいて大きな非効率を生み出します。市場投入までの時間が重要な業界において、手動でのBOM管理に関連するリスクは、競争上の優位性の喪失、生産コストの増加、および顧客の不満を招く可能性があります。 Altium 365 BOM Portal:PCB設計とサプライチェーン最適化のための包括的なソリューション Altium 365 記事を読む
要件トレーサビリティマトリックスとは何か 要件トレーサビリティマトリックスとは何ですか? 1 min Blog 電気技術者 システムエンジニア/アーキテクト 技術マネージャー 電気技術者 電気技術者 システムエンジニア/アーキテクト システムエンジニア/アーキテクト 技術マネージャー 技術マネージャー 要件トレーサビリティマトリックス(RTM)は、電子製品開発において要件とその実装を追跡するために使用される文書です。RTMは、要件とそれに関連するすべての情報を記録した大きな表で、設計文書、回路図、テストなどが含まれます。 これらは、エンジニアやデザイナーがプロジェクトの関係者と協力し、プロジェクトの成果がその目的と一致することを確認するのに役立ちます。 要件トレーサビリティとは何か? 要件トレーサビリティは、プロジェクトの要件、成果物、および製品開発プロセスを通じての検証およびバリデーションテスト間の関係を追跡する能力です。 要件トレーサビリティは、前方、後方、または双方向のいずれかであることができます。 前方トレーサビリティは、各要件が対応する設計、実装、およびテストフェーズにリンクされていることを保証します。 後方トレーサビリティは、チームが最終製品をテストおよび設計フェーズを通じて元の要件にまで遡って追跡できるようにします。これは、納品されたシステムが初期の目標および目的と一致していることを検証するために不可欠です。 双方向トレーサビリティは、前方および後方トレーサビリティの両方を組み合わせ、プロジェクトライフサイクル全体を通じて要件を管理するための包括的なフレームワークを作成します。 要件トレーサビリティは、電子開発チームが次のことを支援します: 正しい製品を構築していることを確認する。 要件データを追跡し、すべての要件が満たされていることを検証するためのテストを含む。 機能、安全性、および規制遵守の要件充足の証明を提供する。 RTMは概念からテストまでの要件を追跡する 電子機器会社が医療機器用の新しいプリント回路基板(PCB)を設計していると想像してください。規制により、PCBは電磁干渉(EMI)に耐性がある必要があります。 要件: PCBは、標準IEC 60601-1-2で概説されたEMI要件を満たす必要があります。 トレーサビリティ: 設計チームは、PCBレイアウトでこの要件をどのように達成するかを示す必要があります。 彼らは、特定の設計技術、コンポーネント、またはシールディング方法を使用するかもしれません。これらはすべて文書化され、要件にリンクされます。 記事を読む