PCB Design and Layout

Create high-quality PCB designs with robust layout tools that ensure signal integrity, manufacturability, and compliance with industry standards.

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
高速信号の長さ合わせ:トロンボーン、アコーディオン、およびノコギリ波チューニング 高速信号のための長さマッチング:トロンボーン、アコーディオン、およびノコギリ波チューニング 1 min Thought Leadership 昔々、高速信号の長さ合わせガイドラインは、異なるトレース長調整スキームを手動で適用しながら生産的に作業できるほどのスキルを持った設計者を必要としていました。今日の最先端のインタラクティブルーティング機能を備えた現代のPCB設計ツールでは、設計者はもはやPCBレイアウトで長さ調整構造を手動で描き出す必要はありません。設計者が残された選択肢は、どの長さ合わせスキームを使用するかを決定することです:トロンボーン、アコーディオン、またはノコギリ波ルーティング。 では、これらの異なるオプションの中で、あなたの高速設計に最適なのはどれでしょうか?十分に幅の広いトレース(つまり、HDI領域ではない)とGHz近くの帯域制限された信号を使用する場合、mmWaveやサブmmWave領域でアナログ信号を扱う際に見られる複雑な共振問題について心配する必要はありません。しかし、高速PCB設計における長さ合わせを行う際には、伝送線と信号完全性の振る舞いに関していくつかの重要な点を考慮する必要があります。 高速信号のための長さ合わせオプション パラレルバスで複数の信号間の長さ調整が必要である場合や、単に差動ペアの両端を長さ合わせする必要がある場合でも、何らかの方法で長さ調整を行う必要があります。低速では、これらの信号の立ち上がり時間が長いため、異なる長さマッチングスタイル間の違いは表面的です。これらの違いは、エッジレートが速くなるとより明確になり、長さ調整構造に入力するインピーダンスが目立ち始め、高周波でのさまざまな構造におけるモード変換の異なるレベルを生み出し始めます。 長さ調整オプションを選択する際には、2つの重要な点を考慮する必要があります: バスは単端か、それとも並列か? バスのインピーダンスは制御されていますか? どれくらいの不一致が許容されますか? 長さ調整構造は常に3つの問題を引き起こします:入力 奇モードインピーダンスの不一致、NEXT、および 差動ペアのモード変換。以下に、高速PCBレイアウトで見られる3つの一般的な長さ調整オプションを紹介します。 ソートゥース調整 長さ調整の最も一般的な例は、ギザギザ調整とも呼ばれることがある鋸歯状調整です。ここに含まれるガイドラインは、この長さ調整構造の元々の意図を反映しており、それはモード変換を制限し、拡張セクション間のクロストークの出現を抑えることです。 下の鋸歯状調整の例では、トレースに沿って滑らかな曲がりがありません。トレースは、下に示されているように、正確に間隔を空けるべきです。まず、「S-2S」ルールが下で使用されています。これは元々、長さ調整されたトレースの長さに沿って 45度の曲がりが使用されることを保証するために意図されていました。「3W」ルール(同名のクロストーク防止ルールと混同しないでください!)は実際には上限であり、鋸歯状の拡張部分の長さはWから3Wの範囲であることができますが、このルールに関してはガイドラインによって異なる場合があります。これらの寸法は、トレースの長さに沿った任意のインピーダンス不連続を最小限に抑えるために使用されます。 高速信号のための鋸歯状長さマッチング:「3W」ルール。 アコーディオン調整 アコーディオンチューニングは、しばしば蛇行長チューニングとも呼ばれます。上で示された斜めの延長を使用するのではなく、直線トレースに沿って追加のチューニング長さをより小さな距離に収めるために直交延長が使用されます。 以下に示すレイアウトは、異なる距離の複数のトレース延長を使用しています。この方法は、多くの単一終端信号の並列バスを含むアプリケーションでよく見られます。典型的な例はDDRです。これらの信号は時間内での同期が必要ですが、これらのトレースは差動バスの一部ではないため、トレースのペア間で厳密な位相要件はありません。したがって、長さチューニングセクションをどこに配置しても、受信コンポーネントは差動モードノイズと共通モードノイズを区別しないため、問題ありません。これが、DDRインターフェースの典型的なルーティングが以下のようなルーティングになる理由です。 高速信号のためのアコーディオン長さマッチング。 記事を読む
Concord Pro とコンポーネント作成 Concord Pro とコンポーネント作成 1 min Blog Altium Concord Pro は単独製品およびブランド名としては廃止され、その機能は現在、Altiumのエンタープライズソリューションの一部として提供されています。詳細は こちら。 はじめに まず最初に、何も言う前に、 Altium Concord Proを使い続けるほど、それが好きになってきました。実際、私はそれを愛しています。Altiumは、彼らが提供するツールの品質で何度も私を驚かせてきました。いくつかの例を挙げると: Draftsman®、ACTIVEBOM®またはActiveRoute®、そしてConcord Pro(私が最高の一つと分類するもの)です。これらなしでどうやって今まで生き延びてこれたのでしょうか。 Altiumとの関わりを通じて、そしてほぼ毎日そのツールを使用している私が知っているのは、彼らを動かしている哲学は、デザイナーが仕事をより簡単にするために必要なものを彼らの手に渡すことです。Concord Proはそれを実現します。 最近、新型2020コルベットの広告を見ました。それはまさに獣です。6.2リッターV-8、500馬力、5,150rpmで470フットポンドのトルク。非常に驚いたのは、0から60MPH(約100Km)までわずか3秒で加速することです。そのように急発進するときに受ける首のむち打ちのために、追加の医療保険が必要かどうか疑問に思います。それは利用可能な8ギアのうち1-5ギアを使用して達成されますが、もしドライバーが1速からシフトアップする習慣がなかったらどうなるのかと思いました。それは、すべてのパワーが未使用のままになるという、絶対的な無駄でしょう。 この獣の力を見逃すことがないのと同じように、ECADソフトウェアの力を見逃してはいけません! なぜ私たちはECADソフトウェアで同じことをするのでしょうか(私たちが使用しているものは何でも)?Altiumと、今ではConcord Proを使って、市場で最も強力なツールの一つを手に入れました。しかし、多くのPCBデザイナーは、初速から抜け出せないでいます。それは非難ではなく、むしろデザイナーであるあなたへの挑戦です。ギアを変える時です。Concord Proは私たちの2020年型コルベットです—3秒で0-60まで加速する準備はできていますか? Concord 記事を読む
PCB設計におけるシリコンフォトニクス統合の課題 PCB設計におけるシリコンフォトニクス統合の課題 1 min Blog シリコンフォトニクスは、シリコンICで使用されている製造プロセスをそのまま使用します 最近のIEEEカンファレンスでリチャード・ソレフと会い、電子・フォトニック統合回路(EPICs)の現状について話し合う機会を得ました。彼はしばしば「シリコンフォトニクスの父」と呼ばれており、その理由は明らかです。彼に優しく頼めば、シリコン上に直接フォトニック回路としての基本的な論理ゲートをどのように構築するかを教えてくれるでしょう。 今はシリコンフォトニクスにとって画期的な時期です。この技術は数十年前から存在していますが、現在、大量商業化の寸前にあり、大衆に提供されようとしています。標準的な電子部品で動作するシステムにシリコンフォトニクスを統合する前に、克服すべきいくつかのエンジニアリングの課題がまだあります。 ICおよびPCB設計における100 Gbps+の課題 ここまで読んでまだ混乱している人のために、いくつかの背景を説明します:フォトニック回路とは、光のみを使用して動作する回路要素です。これらの回路は、光学および電子工学のコミュニティで主要な話題です。12年前、設計者は銅を介して100 Gbpsでデータを転送できる単一リンクの作成について話していました。 銅は短距離で100 Gbpsのデータ転送を可能にすることがわかり、一方で光ファイバーは長距離で最適に機能します。遅い機器でも並列化を使用して、データレートを100 Gbpsや400 Gbpsに増加させることができます。100 Gbpsネットワークで動作するために必要な光学機器は、非常に特定の設計要件を持ち、すべての電子部品と普遍的に互換性があるわけではありません。 データレートが増加するにつれて、PCBやIC内の電気信号の整合性の問題がより顕著かつ目立つようになり、その結果、信号の立ち上がり時間が短くなります。ICレベルでは、データレートの増加に伴い、相互接続遅延時間、伝播遅延時間、およびクロストークの強度がすべて増加します。PCBレベルでは、クロストーク、 放射されたおよび伝導されたEMI、および熱管理が、高速設計の重要な考慮事項となります。光学部品は、電子部品で見られる同じ信号整合性の問題に悩まされない、より高帯域幅の解決策を提供します。電子IC設計におけるより大きな並列性は、光学部品によって提供されるより高帯域幅の解決策を必要とします。 フォトニック集積回路(PIC)と電子・フォトニック集積回路(EPIC)に注目してください。前者の回路は、多数のフォトニック要素を単一のパッケージに統合して、完全に光で動作するように設計されています。後者の回路は、光を使用して動作するように設計されていますが、これらの回路には電子要素が現れることがあります。したがって、これらの回路は、電子部品の帯域幅に応じて、標準的な電子部品ともインターフェースできます。 なぜフォトニクスで、なぜシリコン上なのか疑問に思うかもしれません。シリコン製造所とチップ製造能力の成熟度は、これらの伝統的な製造プロセスをフォトニック回路に即座に適応させることができることを意味します。もし私たちが近いうちにPICやEPICを見ることになるなら、それらは最も確実にシリコンフォトニクス技術に基づいて構築されるでしょう。 将来的には、これらのICをPICやEPICとインターフェースすることになるでしょう PCBでのシリコンフォトニクスの使用における課題 シリコンの素晴らしい点は、1550 nmの波長で透明であるため、1550 記事を読む
デジタルICにはどのサイズのデカップリングコンデンサを使用すべきですか? デカップリングコンデンサの計算:デジタルICにはどのサイズを使用すべきですか? 1 min Blog これらのデカップリングコンデンサは適切なサイズですか? PCB設計ガイドライン、特に高速デジタル設計の「専門家」が繰り返し指摘することの一つに、適切なデカップリングコンデンサのサイズを見つける必要性があります。これは、これらのコンデンサがPDNで何をすることが期待されているのか、また電源の整合性を保証する上での彼らの役割を完全に理解せずに対処されることがあります。また、デジタル集積回路の電源ピンとグラウンドピンをブリッジするために、3つのコンデンサ(通常は1 nF、10 nF、100 nFなど)を配置するという数十年前のガイドラインをデフォルトとするアプリケーションノートも多く見かけます。過去には、これで十分だったかもしれません。高速デジタルコンポーネントで生じる電源の整合性の問題は、コア電圧に干渉するほど悪くなかったので、3つのコンデンサが行う仕事は十分でした。 今日の高速集積回路は、複数の出力を持ち、コア電圧が低い(1.0Vまで低い)ため、昔の遅いコンポーネントよりもはるかに厳しいノイズ制約を持っています。厳しいノイズ制約とは、より正確なデカップリングが必要であることを意味します。このため、今日の比較的強力なMCUやその他多くのデジタルコンポーネントを扱う設計者は、デカップリングキャップを適切にサイズする方法を知っておく必要があります。では、最良の方法は何でしょうか?一般的に、これを行う方法は2つあります。それぞれを見て、デカップリングキャパシタの値を計算する方法と、なぜ古い「3つのデカップリングキャパシタの神話」が現代の高速デジタル設計では関係ないのかを見てみましょう。 等価キャパシタモデルの理解 デジタル設計に必要なデカップリングキャパシタのサイズを決定する前に、キャパシタの基本的な回路モデルを理解する必要があります。キャパシタが理論通りに振る舞うと思いたいところですが、実際にはそうではありません。すべてのキャパシタには、そのインピーダンススペクトルを定義するリード上にある程度のインダクタンスがあり、これは実験的に直列RLCネットワークとしてモデル化されます: キャパシタをモデル化するための等価RLC回路 このモデルでは、ESRとESLはそれぞれ等価直列抵抗と等価直列インダクタンスです。Cの値は、コンポーネントのデータシートに記載されているキャパシタンスとして取ることができます。最後に、Rの値はキャパシタを形成する誘電体の導電率を考慮しています。これは、キャパシタが充電されて回路から取り外された後に発生する一時的な漏れ電流を考慮しています。この値は通常、無視できるほど大きいです。 このモデルでRを無視すると、値(ESR/(2*ESL))は、回路の端に接続された負荷が0オームであると仮定した場合の等価回路の減衰定数です。これは、回路がフル充電/放電下で入力電圧の変化に対応するために必要な最小時間です。キャパシタのデータシートには減衰定数は記載されていませんが、代わりに下記のようなインピーダンススペクトルグラフを示しています。必要であれば、データシートのESLとESRの値を使用して減衰定数を計算することができます。 最後に、 すべての実際のキャパシタには自己共振周波数があり、任意の直列RLC回路の値と等しく、この場合は次のとおりです: 自己共振周波数は、インピーダンススペクトルグラフで確認できます。以下に、実際のAVXキャパシタの例を示します。 デカップリングキャパシタは実際に何をするのか? これは、デジタル集積回路の電力整合性を保証するためにデカップリングキャパシタが必要な理由を理解するのに非常に役立つ素晴らしい質問です。全てのキャパシタは、直流電源に接続されたときに平衡状態で電荷を蓄えます。キャパシタ内の板は充電され、総電荷量はQ = CVに等しくなります。もしVが変動したり少し落ちたりすると、その電荷Qの一部が放出され、小さな電池のように負荷に供給されます。 デジタル回路に接続された実際のコンデンサーで生じる問題は、電圧降下が単一の周波数で発生しないことです。ソース電圧の時間依存の変動や回路への突然の電流バーストは、オシロスコープ上で鋭いエッジレートを持つスパイクのように見えることがよくあります。これは、その信号に関連するパワースペクトラムが一連の周波数にわたって広がり、自己共振と重なることを意味します。結果として、コンデンサーは応答して放電し、 電源バス上に一過性の振動を引き起こします。この電力が電源バス上のデジタルコンデンサICによってPDNに引き込まれる場合、電源バス上の一過性は電源ピンでのリンギングとして現れます。しかし、適切なデカップリングコンデンサのサイズと数が選択されれば、この変動は最小限に抑えることができます。これが、3つのコンデンサの持続的なガイドラインがある理由です。それは、安定した電力を確保しようとする際に、最も悪くない配置とサイズ付けです。 記事を読む
高速PCB設計 PCBシグナル:高速PCB設計の重要要素 2 min Blog 課題の理解 どれくらいが長すぎるのか? インピーダンスのマッチング リターンエネルギーはどこで流れるのか? 差動ペア ビアについては? クロストーク 時間に合わせて踊る 基板 材料 レイヤー 可能なレイヤースタックアップ 課題の理解 この記事の目的は、高速設計の主要な要素を紹介し、それぞれの要素がAltium Designerでどのように取り組まれているかを議論することです。この記事は高速設計の完全な議論を提供しようとするものではありません。そのため、高度に経験豊富で学識深い設計者やエンジニアが、この主題に関して優れた参考文献や書籍を多数執筆しています。この記事の研究中に使用された著者や論文へのリンクについては、 参考文献 セクションを参照してください。 PCB設計が高速設計であるとは具体적にはどういうことでしょうか?確かにそれは物事が迅速に行われることに関係していますが、ボード上で使用されるクロックレートだけの話ではありません。デバイスが高速でエッジを切り替えるとき、つまり、信号がルートを伝わってターゲットピンに到達する前に遷移が完了するほど迅速に状態が切り替わるデバイスが含まれている場合、その設計は高速設計とされます。この状況では、信号がソースピンに反射され、元の信号データが劣化または破壊される可能性があります。高速エッジを持つ信号は、ルートから放射して隣接するルートにカップリングすることも、さらに放射して電磁干渉(EMI)となり、製品が強制的な放射基準を満たさなくなることもあります。 信号に高速のエッジがある場合、エネルギーがルーティングを通じて移動する方法が変わります。エッジレートがゆっくりと変化する回路では、エネルギーがパイプを通って水が流れるように、ルーティングを通じてエネルギーが流れると考えることができます。はい、水がパイプを押し通される際に摩擦によっていくらかのエネルギーが失われますが、基本的にはそのほとんどが他端に到達します。DCまたは低切替え周波数の回路では、ルートの抵抗を計算し、途中で失われるエネルギーの量が回路の性能に影響を与えないようにすることができます。 高速設計ではそれほど単純ではありません。なぜなら、配線された銅を通じて電子として流れるエネルギーだけでなく、高速で切り替わる信号では、そのエネルギーの一部が配線された銅の周りを電磁エネルギーとして移動するからです。これで、あなたはもはや電子のための銅の経路を設計しているのではなく、プリント基板に埋め込まれた一連の伝送路を設計しているのです。 記事を読む