PCB Design and Layout

Create high-quality PCB designs with robust layout tools that ensure signal integrity, manufacturability, and compliance with industry standards.

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
1つのGND接続によって100台のMP3プレイヤーに問題が発生した理由 1つのGND接続によって100台のMP3プレイヤーに問題が発生した理由 1 min Thought Leadership テクノロジーは偉大なもので、確かに人生の特定の部分を楽にしてくれました。しかし、子育て、コーディング、電子機器の設計、そして時にはこのような記事を書いていると、最高のアプリを使用しても、日々のストレスを低減できなくなることがあります。例えば、私は今朝塩と砂糖を間違えて、子供の大好きなお粥に混ぜてしまいました。私の小さなミスにより、私の5歳の子供はGordon Ramseyと張り合えるくらい騒ぎ立ててしまいました。 同様に、ごく小さなミスにより、優れた設計が台無しになることもあります。非常に運が良ければ、そのミスは子供の癇癪に10分間付き合う程度の問題で済むかもしれません。残念ながら、PCB設計の世界では、これは数百もの欠陥のある設計を処理することになるのが普通です。私は5年前に、まさにこのような例を経験しました。小さな設計ミスのせいで、きっかり100台のカスタマイズされたMP3プレイヤーが、左チャンネルの音声に障害を持つことになってしまったのです。このミスは大きな苦痛であったため、今でも詳しい点を全て覚えています。 GNDが同じであっても異なる場合 MP3プレイヤー、またはオーディオをベースとする他のPCBプロジェクトの設計を開始する前に、何が重要なのかに集中する必要があります。そして、場合によってはこれは十分に明確ではありません。私は今朝、息子にお粥をあげることが目的だと考えていましたが、本当に肝心なのは正しい砂糖を入れることだったわけです。それと同様に、どのような種類の特化した集積回路(IC)を使用するかに気を取られていたところ、本当に決定的なのは電子回路における各種のGNDの重要性を知ることだったということが考えられます。大学の回路設計の講義では、電力GND、デジタルGND、アナログGNDについて学びます。 全てのGNDが同じではありません。 オーディオプレイヤーを設計するときは、アナログとデジタルのGNDを取り扱う必要があります。これらのGNDは回路図に、異なるシンボルで表示されますが、PCBレイアウトでは互いに接続されているように見えます。 GND配置 についてのいくつかのベストプラクティスを見ると、ほとんどの場合にこれらを単一の点、たとえばスター型GNDに接続することが推奨されています。 この助言を無視することは許されませんが、オーディオ設計の全体で最もやってはいけないことは、 単一のGNDプレーン を持つことです。オーディオGNDとデジタルGNDを単一の点で接続すると、オーディオチャンネルに干渉が起き、しかも原因がそこにあると判別するのは困難です。 私は、オーディオICをマイクロコントローラー(MCU)に接続している シリアルペリフェラルインターフェイス (SPI)の信号が干渉を引き起こしていることに気付かなければ、数万ドルの損失を引き起こし、大幅な修正を必要としたかもしれない経験があります。しかし、それに気づいても、100台のMP3プレイヤーに影響を及ぼす問題点を手作業で修正するため、私のチームは長時間の作業を余儀なくされました。 GNDの接続場所が重要な理由 この失敗から、私は電子機器の設計における最も大きな教訓の2つを得ました。まず、 テクニカルユーザーガイドは常に全部読む ことです。次に、各種のGNDプレーンをどこに接続するかは重要だということです。最初の教訓に従っていれば、この惨劇は避けられたでしょう。元の設計で私が失敗したのはこの部分です。 GNDプレーンでの失策は惨劇を招くことがあります。 記事を読む
ウェアラブル デバイス: 機能的でお洒落なテクノロジー ウェアラブル デバイス: 機能的でお洒落なテクノロジー 1 min Blog 電気技術者 電気技術者 電気技術者 両親が若い頃の古い写真を見て、「どうしてこんな見苦しい服を着ていたんだろう?」と思うことがありますか? 私が特に気になるのは大きな眼鏡です。ファッションは重要です。流行は変化にするせよ、そのことは昔から変わっていません。モノのインターネット(IoT)やウェアラブル電子機器において、美観は多くの場合に軽視されています。設計者は機能と外観を同時に開発するのではなく、機能を先に決めて、外観とフォームファクターは後回しにする傾向があります。製品を売るためには、ファッションも重要であることを理解する必要があります。外観と機能を適切に両立させた、3つのデバイスを紹介しましょう。 上品なギーク 映画やテレビ番組を見れば、ギークは以前としてあまり外見が良くないことに気づくでしょう。Fonzieは、年をとってもBig Bang TheoryのSheldonよりもお洒落です。電子機器を購入する人々はオタクのように見られることを望まず、多くのウェアラブルはこの点で失敗しています。 IoTは 我々が予測したほど 急速に成長していないことが、最近のニュースで明らかになっています。これには いくつかの理由 があり、 低消費電力ワイドエリアネットワーク(LPWAN) などのスマートビルディング テクノロジーが遅れていることもその1つです。ウェアラブルはIoT市場のごく一部に過ぎず、その主な理由は 不便である ことと、お洒落でないことです。 利便性については既に解説しました し、 中高齢者 から見たファッションの側面についても説明しました。高齢者は、自分の命を救ってくれるなら、格好の悪いデバイスでも身に付けるかもしれません。しかし他の人々は、時計が命を救ってくれることを期待していません。期待するには、時間が分かること、アラームで通知してくれること、歩数をカウントしてくれること、そして外見がいいことです。見た目が悪ければ、お金を費やす価値はありません。それよりは、時間を見るためにはお洒落な時計を購入し、それ以外は携帯電話を使用する方がいいでしょう。ガジェットは適切に動作するだけでなく、格好良く見えることが必要です。 記事を読む
PCB設計におけるDRC: 設計の失敗の防止 PCB設計におけるDRC: 設計の失敗の防止 1 min Thought Leadership 私は長年にわたって小さなボートを所有しており、水上での趣味に使用していましたが、いくつかの重要なルールに従う必要がありました。ルールの1つは、ボートを水に浮かべる前に、排水プラグを必ず取り付けるということです。新しいボートをが沈んでしまい、回収するために泳ぐくらいなら、ただ泳ぐため水に入る方がはるかに安くつきます。 ルールは自分たちを保護するためのものだということは、誰でも知っています。しかし、不注意または意図的に、ルールが無視されることもあります。回路基板の設計にも、従うべきルールがあります。さいわい、今日のPCB設計ソフトウェアにはデザインルール チェック(DRC)が組み込まれています。設計者はこれらを使用するだけで十分です。 ルールは設計の失敗を防止するためのものです。 基板のDRC 回路基板の設計のサイズや複雑性にかかわらず、デザインルールのチェックは行う必要があります。特定の設計は非常に単純なため、DRCに時間を費やす価値はないと主張する人もいます。しかし、最も単純な設計でも、予期しない設計違反を見逃したたために、大きな問題を引き起こす可能性があります。DRCにより、設計を製造のため提出する前に、設計の整合性を確認できます。回路基板設計のDRCは、ツールごとに名前や説明が異なるため、基板設計ソフトウェアでレイアウトに対してチェックすべき、いくつかの一般的な要素を以下に示します。 基板のテクノロジーのルール : レイアウトツールでは、設計の各種物理パラメーターの有効性、たとえば物理レイヤーが正しく定義され、重複していないことをチェックできる必要があります。 フットプリント : レイアウトツールは、設計に使用されているフットプリントを個別に、またはバッチモードでチェックできる必要があります。 コンポーネント : レイアウトツールを使用して、コンポーネントが適切なフットプリント用に正しく設定されているかどうかをチェックできます。また、コンポーネントの間隔や位置が正しいことや、グリッド上またはグリッド外、および基板の予想される輪郭内に正しく配置されているかどうかもチェックする必要があります。 ネット : 基板上の電気的なオブジェクト(ピン、ビア、配線、フィル、プレーン)のクリアランスや、他の電気的な制約をチェックするよう、デザインルールを設定できます。 高速 記事を読む
高電圧PCB設計: 沿面距離と空間距離 高電圧PCB設計: 沿面距離と空間距離 1 min Blog PCB設計者 電気技術者 PCB設計者 PCB設計者 電気技術者 電気技術者 高電圧の応用には、通常のPCBよりも厳しい設計パラメータが必要になる 大学生のとき、私は電気化学エッチングの実験を行いました。その経験をずっと履歴書に記載していたのは、高電圧源や危険な化学品を使った実験について、面接官が必ず話を聞きたがったからです。ところが、危険な職場環境をまったく意に介さない人間が求められる仕事には就きたくないと後になって気付きました。 それがきっかけで、私は高電圧設計について学び始めました。高電圧の製品に要求される基準には圧倒されましたが、それと同時に安心もしました。私たちが作成した高電圧製品を大学院生たちが使うのを止めることはできないものの、基板がきちんと保護されているのが分かれば心配する必要はありません。 安全の確保にあたって、特定のスペースルールが必要になる場合とは 高電圧PCB設計に必要となる厳しいスペースルールは、すべてのPCB設計に適用されるわけではありません。一般的には、製品の通常の作動電圧が30VACまたは60VDC以上になると、基板設計に スペースルールを適用すべきでしょう。特に、高電圧で密集した設計の場合は慎重になる必要があります。密集したデザインではスペースが極めて困難になり、保護の観点からさらに重要になるからです。 高電圧設計ではスペースがさらに重要になります。基板全体の電圧によって、PCBの導電性要素間でアーク放電が発生しやすくなるからです。発生したアーク放電は、製品にもユーザーにも極めて大きな危険をもたらします。こうした危険を軽減するために、空間距離と沿面距離という主に2つのスペース測定の基準があります。 空間距離とは 空間距離とは、2つの導体間の空間の最短距離を指します。私はこの定義をあき高(つまり、自分の頭が何かにぶつかる前に、どのくらいの空間があるか)として覚えています。 PCBの空間距離が短すぎると、基板上で隣接する導電性要素間で過電圧によるアーク放電が発生する可能性があります。 クリアランスルールは、PCB材料、電圧、環境条件によって異なってきます。環境による影響はかなり大きくなります。最も一般的には、湿度によって空間の破壊電圧が変化し、アーク放電が発生する可能性に影響が及びます。ここでは、粉塵についても考慮しなければなりません。PCBの表面に集まった微粒子は時間とともにトラックを形成し、導体間の距離を縮めてしまいます。 アーク放電は製品に損傷をもたらし、ユーザーに被害を及ぼします。 基板でのスペースが重要な設計パラメータになるのはこれが理由です。 PCBでの沿面距離とは 空間距離と同様に、 沿面距離もPCB上の導体間の距離を指しますが、こちらは空間の距離ではなく、絶縁材の表面に沿った最短距離になります。沿面距離の要件は環境や基板の材料によっても異なり、空間距離と同じく、基板上に蓄積した水分や微粒子によって沿面距離が短くなる場合があります。 密集した設計では、沿面距離の要件を満たすことが困難になり得ます。トラックを移動させることが第一の選択になることは稀であり、表面の距離を延ばすには他にいくつかの方法があります。それは、トラック間にスロットを追加するか、または絶縁物に垂直の障壁を実装することです。いずれの方法でもトレースのレイアウトを変更することなく、沿面距離を大幅に延ばすことができます。 材料の比較トラッキング指数(CTI) 空間距離と沿面距離の要件のうちで作動電圧の次に重要な要素は、PCB材料の特性に関するものです。材料の電気絶縁性は、比較トラッキング指数(CTI)で示されます。CTIは電圧で表示され、材料の表面がいつ破壊するかを測定する標準テストによって決定されます。 破壊値に基づいて、材料は「0」から「5」までの6つのレベルに分類されます。製品に対する絶縁物の規定レベルは、このCTIの分類に基づきます。最も低いレベルは「5」で、電圧は100V未満となります。破壊値が600V以上のレベル「0」に分類される材料が最も頑丈で、多くの場合にコストも高額になります。 記事を読む
モノのインターネットのハードウェア プラットフォームのフレキシブル化 モノのインターネットのハードウェア プラットフォームのフレキシブル化 1 min Thought Leadership PCB設計者 電気技術者 ハードウェア製造業スタートアップ企業 / エレクトロニクスプロトタイパー +1 PCB設計者 PCB設計者 電気技術者 電気技術者 ハードウェア製造業スタートアップ企業 / エレクトロニクスプロトタイパー ハードウェア製造業スタートアップ企業 / エレクトロニクスプロトタイパー システムエンジニア/アーキテクト システムエンジニア/アーキテクト 子供の頃に熱中したり執着したりしたものを覚えていますか? 私が若かった頃、誰もがポケモンと、子供でも触れる電子機器に熱中していました。これら2つの熱狂はやがて、 たまごっち という最終的な流行に結びつきました。これは大ヒットして、携帯電子機器の人気と、小さく非現実的な動物に対しての子供たちの愛情を生み出しました。最近では、PCBにおける2つの熱狂、すわなちフレキシブル電子回路とモノのインターネット(IoT)が結合しました。自作用開発基板のようなハードウェア プラットフォームはIoTの誕生に役立ち、フレキシブル ハイブリッドエレクトロニクス(FHE)はそのIoTを成熟へ導くために役立っています。技術者は、Arduinoのような大きなブランドと互換性のあるフレキシブルな基板や周辺機器の設計を開始しています。IoT開発者が必要とするコンポーネントを搭載した、使いやすい基板を設計することで、この動向に加わることができます。 フレキシブルなハードウェア プラットフォームの利点 完全フレキシブルおよびリジッドフレキシブルPCBは長年にわたり、 航空宇宙 などハイテク産業に限って使用され、ローバーが他の惑星まで飛行するために役立っていました。しかし今日では、これらのPCBの利点は地球に戻って、開発基板やその周辺機器に利用されるようになっています。フレキシブルなハイブリッド電子機器では、従来型電子機器の低コストや性能と、フレキシブル回路の容積やフォームファクターの利点を組み合わせて活用しています。 一部の組織は 将来の完全にフレキシブルな電子回路 を構想していますが、現在のところはハイブリッドで妥協する必要があります。フレキシブル ハイブリッド電子回路は、フレキシブルな基板に従来型のコンポーネントを実装するものです。従来型の電子機器コンポーネントは長年にわたり、コスト、速度、消費電力の点で高度に最適化が行われてきました。 フレキシブルなアナログ も多少存在しますが、比較すると性能的には見劣りするものです。また、十分に使用され実績のあるチップを使い慣れていることから、デバイスで簡単に使用できます。 しかし、リジッドPCBには多くの欠点があります。主な問題点は曲がらずに折れる傾向があること、サイズ、および動的な圧力を処理できないことです。フレキシブル基板にコンポーネントを取り付けることで、これらすべての問題を解決できます。言うまでもなくFHEは曲がるように作られており、一部のFHEは 200,000回もの曲げ耐性 があります。信頼性に加えて、折り曲げ可能な基板はフォームファクターも小さく、通常のPCBでは収まらないような領域にも折りたたんで収納可能です。 記事を読む
高齢者向けのお洒落で機能的なウェアラブル テクノロジー 高齢者向けのお洒落で機能的なウェアラブル テクノロジー 1 min Blog 電気技術者 電気技術者 電気技術者 最近、スマートウォッチで年を確認したことがありますか? 2017年現在、私は若い人たちがウェアラブルを身に付けて歩き回っているのはよく見かけますが、年配の人が付けているのはあまり見かけません。これは、 アメリカ人が高齢化 し、さらに多くの人々が今後数年間に統計上の高齢者に加わることによる 新たな機会を示して います。年配の人たちは、若い人たちとは異なる理由でウェアラブルを必要としています。年配の人たちは、自分たちの安全を保ち、健康状態を監視してくれるデバイスを探し求めています。ただし、他の人たちと同じこともいくつか気にしています。具体的には外観と利便性です。現在市場に存在するデバイスのいくつかは、高齢者向けのウェアラブル テクノロジーがどのような外観であるべきかを的確に示しています。 高齢者を対象にする PCBおよび製品の設計者の大多数は高齢者ではないと考えていいでしょう。我々はまだそれほど年をとっていないため、高齢者の必要や要求を予測するのは多少困難です。ほとんどの人たちと同様に、高齢者も見た目と利便性については気にしています。また、ウェアラブルを使用して自分たちの健康状態を確認し、健康を保つことにも関心を持っています。 私の祖母は、見た目に気を使っています。アルツハイマー病にかかった後でさえ、祖母はほぼ毎日、きれいなシャツと宝石類を身につけています。高齢者は同様に、ウェアラブルの 外観が良いことも 望んでいます。シャツから大きなペンダントがはみ出しているようなものはお洒落ではなく、便利でもありません。若い人たちにとって使いやすさは長所ですが、必須ではありません。若い人たちはメニュー操作やリストのスクロールを簡単に扱えます。しかし、重度の関節炎を患った人にとっては、小さなタッチスクリーンの小さなボタンをクリックすることは 簡単ではありません 。高齢者向けのデバイスを設計するときは、高齢者の物理的な機能障害を考慮し、使いやすさを最優先にする必要があります。また、この巨大な市場に参入するには、外観の良さも求められます。 ウェアラブルがこのくらい見た目が良ければ申し分ないでしょう。 機能に関する限り、高齢者は歩数を数えることは考えていません。これらの人たちは、自分たちの健康上の問題点をトラッキングするために役立つデバイスを求めています。高齢者の90%以上は最低1つ、 77%は2つ以上 の慢性疾患を抱えています。ウェアラブルは、睡眠習慣、脈拍、ストレスレベルなどを記録し、これらの疾患の管理に役立つことが可能です。病気と関連して、転倒も高齢者にとっては大きな心配点です。高齢者にとっては腰の怪我が 死を意味する 場合もあるため、転倒を記録し、可能なら予防することが重要です。自社のデバイスが機能の点で他社のものを凌駕することを期待するなら、創造的になる必要があります。創造性からどのような製品が生み出されるか、いくつかの例を紹介しましょう。 記事を読む
設計にフェライトビーズを使用してEMIを低減する方法 設計にフェライトビーズを使用してEMIを低減する方法 1 min Blog PCB設計者 電気技術者 PCB設計者 PCB設計者 電気技術者 電気技術者 「ロケット科学みたいに、さっぱりわからない」というのはよく使われてきた言い回しです。小さなJimmyは九九までロケット科学のようだと言っていました。今日では「ロケット科学」を「電磁気干渉」と置き換えるべきでしょう。EMIは多くの人々がぼんやりとしか理解していないものの1つです。この理由から、私は 正しい接地方法、 AC/DC回路、 高速配線、 差動ペア配線などについて記事を書いてきました。順番から、次に書くべきなのはフェライトビーズを使用してEMIを低減する方法でしょう。フェライトを使うのは少々面倒なので、まず その背後にある理論を理解することが重要です。ほとんどの電子部品は本質的にプラグアンドプレイです。しかし、フェライトはシステム内に設計して組み入れる必要があります。理論を理解すれば、LCフィルター、GNDプレーンと電源プレーンの分離、ソースのノイズのフィルタリングなどを実践できるようになります。 フェライトのLCフィルター 設計者は多くの場合、フェライトビーズのことをローパスフィルターと考えようとします。これらは確かに高周波をブロックしますが、特定の帯域しかブロックしません。それより上の帯域では、固有の容量が優先します。ビーズ自体はローパスフィルターではありませんが、バイパスコンデンサーと組み合わせてローパスフィルターにすることができます。この場合、本質的にLC(コイルとコンデンサー)フィルターとして機能します。フェライトビーズをこのように使用するときに大きな問題の1つは、LC共鳴です。 重要な点を先に述べると、回路の電源ラインにフェライトビーズを使用する場合、バイパスコンデンサーが必要です。低い周波数ではフェライトビーズはコイルとして機能し、電流の変化に抵抗します。すなわち、集積回路が電流のスパイクを引き出そうとすると、ビーズはそのピークに抵抗し、回路の動作の妨げとなります。バイパスコンデンサーは電荷を保存し、これらの電源スパイクを供給するために必要です。またバイパスコンデンサーは一般的にも良いやり方です。 コンデンサーとフェライトを設置したら、高周波をフィルタリングして除去できます。フェライトビーズには、LCフィルターに使用される通常のコイルと比較して、いくつかの利点があります。フェライトビーズは低い周波数で ロールオフが急速です。また、固有の抵抗が存在するため、発生の可能性がある共鳴を減衰させるため役立ちます。多少の減衰能力はあっても、LC共鳴は依然として発生する可能性があります。 大きなコンデンサーを使用するときは、特にリスクが大きくなります。共鳴が発生した場合、 最大10dBのゲインを招くことがあります。フィルターの設計では共鳴を避けるよう注意してください。 フェライトビーズとバイパスコンデンサーを使用して信号をフィルタリング デジアナ混在信号のGND/電源プレーンの分離 EMIが回路内を伝搬する主な手段の1つは、GNDおよび電源プレーンです。混在信号回路では、単一のGND/電源プレーンがアナログ信号とデジタル信号の両方に使用されるため、特にこれが一般的となります。このため、 GNDと電源のプレーンを別にするのが最良ですが、GNDは依然として同じ相対電圧に参照される必要があります。これらの問題から極めて困難な課題が生み出されますが、この課題を解決するためにフェライトビーズが役立ちます。 フェライトビーズは、 アナログとデジタルのGND/電源プレーンを接続するために使用できます。この方法により、両方のプレーンは依然として同じ電圧に参照されますが、互いに絶縁されるようになります。ビーズは、通常ならプレーンから別のプレーンへ直接転送される ノイズをブロックできます。 記事を読む