PCB Design and Layout

Create high-quality PCB designs with robust layout tools that ensure signal integrity, manufacturability, and compliance with industry standards.

Filter
見つかりました
Sort by
役割
ソフトウェア
コンテンツタイプ
適用
フィルターをクリア
接地による、ESD損傷からのPCBの保護 接地による、ESD損傷からのPCBの保護 1 min Blog Star Trek の機関室を別とすれば、私は、高校生になるまで、職業として工学を検討したことはありませんでした。とはいうものの、無意識でしたが、間違いなく工学に関心がありました。 Star Trek の機関長の名前を全て挙げられたことを考えると、その兆候は早くからありました。しかしながら、ESDブレスレットをプレゼントされてとんでもなく興奮したときに、将来が決まりました。宝石箱に1つぐらいは入っていませんか? このブレスレットは、自分の皮膚に装着する、網目状のゴムと幅広の金属片と、アース端子に接続するワニグチクリップが付いたケーブルで構成されています。当時のインターネットはダイヤルアップ接続のみでしたが、私は、自分を接地する方法を理解するため、ページの読み込みを待って何時間も費やすことを止められませんでした。ブレスレットを身に付け、友人に頼み込んでコンピューターのRAMのアップグレードをやらせてもらったり、単純にコンピューターを開けさせてもらったりしました。 接地は、金属に触れたりすり足をしないなど、簡単にできますが、ESDの影響を受けやすいものを取り扱う前に接地するのが理想的です。 静電放電 から保護するための接地の利用は、製品開発の多くの段階で必要です。RAMカードなど、静電気の影響を受けやすい製品を扱っている場合、ESDマットの使用や自分自身の接地などをお勧めします。適切に設計することで、製品に対して接地による保護を適用することもできます。効果的な接地方法をPCB設計に適用し、安全な取り扱いへの依存を減らすほうが得策です。未来の顧客や導入者が全て、静電気の影響を受けやすい製品の取り扱い時に過度に自身を接地すると仮定することは合理的ではない、とSpockなら指摘するところでしょう。 GNDプレーンの使用 ESD保護のために接地を使用する方法は多数ありますが、まず最初に挙げられるのはGNDプレーンの使用です。多層設計の採用は、必ずしも実現可能ではありませんが、ESD保護について不安がある場合、GNDプレーンは本当に役立ちます。ご存知のとおり、突然の電圧放電は電磁場を誘発します。 適切に接続されたGNDプレーン は、影響を受けやすいコンポーネントから電流を離して配線することで、電圧放電による損傷を軽減できます。 GNDプレーンを使用すると、GNDトレースへの電源供給における 回路ループの領域を減らす ことができます。回路ループの領域を減らすと、ループ領域内で誘導されるEMIの総量が減ります。同様に、流れるべきでないコンポーネントに流れる可能性のある対応電流も減ります。 GNDプレーンの保護 優れたGNDプレーンがどれだけ機能できるとしても、ESDパルスが直接GNDプレーンに放電すると、GNDプレーンは影響を受けやすいコンポーネントへの直接経路となる可能性もあります。このような損傷を回避するため、必ず、影響を受けやすいコンポーネントの電源とGNDの間にTVS回路を使用して、誘導された電流を迂回させます。正しく実装された場合、コンポーネントに発生する電圧差は、TVSの制限電圧に留まります。 また、影響を受けやすいコンポーネントの電源とGNDの間に高周波の 記事を読む
フェライトビーズの機能と適切な選択方法 フェライトビーズの機能と適切な選択方法 1 min Thought Leadership PCB設計者 電気技術者 PCB設計者 PCB設計者 電気技術者 電気技術者 ときどき、電磁波が目に見えたらいいと思います。もし見えたら、EMIをはるかに簡単に検知できるでしょう。複雑な設定やシグナルアナライザーをむやみにいじり回す代わりに、私なら一体何が問題なのかを見極めます。EMIを見ることはできませんが、場合によってはオーディオ回路を通じて音を聞くことはできます。この種の干渉に対して可能な解決方法の1つがフェライトビーズです。困ったことに、フェライトビーズにはちょっと不可解なところがあります。フェライトビーズを適切に使用するためには、その電磁特性と使用中にそれがどのように変化するかを理解する必要があります。フェライトビーズの原理を理解したら、自分の基板に適したものを注意深く選択する必要があります。適切なフェライトビーズを選択しないと、最終的には手に余る問題が生じる可能性があります。 フェライトビーズの原理 フェライトビーズは、高周波信号を減衰するために使用されます。このように説明すると、コイルと同じだとお考えになるかもしれませんが、フェライトビーズはコイルよりやや複雑です。簡素化したフェライトビーズの回路モデルは、その周波数特性を理解するのに役立ちます。ただし、その特性は、電流と温度の関数として変化します。 フェライトビーズは、直列抵抗体の後にコイル、コンデンサー、抵抗器を全て並列したコンポーネントとして モデル化できます 。直列抵抗体は、DC電流に対する抵抗です。コイルは、高周波信号を減衰する主要コンポーネントです。並列された方の抵抗器は、AC電流の損失を示します。コンデンサーは、寄生容量を示します。フェライトビーズの インピーダンス対周波数の曲線 では、大部分が抵抗であるインピーダンスが、狭い帯域でのみ極端に高くなります。ここでは、フェライトビーズのインダクタンスが優位です。この帯域より上では、寄生容量が引き継ぎ、高周波インピーダンスはすぐに低くなります。 フェライトビーズには、通常、特定のDC電流に対する定格電流があります。アンペア数が指定された電流値より大きいとコンポーネントが損傷する可能性があります。問題は、この制限が熱により大きく影響を受けるということです。温度が高くなると、 定格電流がただちに下がります 。定格電流は、フェライトビーズのインピーダンスにも影響します。DC電流が大きくなると、フェライトビーズは「電磁飽和」してインダクタンスを損失します。電流が比較的大きい場合は、飽和により、 インピーダンスを最大90%減らす ことができます 負荷電流はフェライトのインピーダンスを変える可能性があります。 適切なビーズの選択方法 ここまでで、フェライトビーズの原理を理解できたことと思いますので、次に、自分の回路に適したビーズを選択します。これはそれほど難しくはありません。ビーズの仕様に注意するだけです。 多くの設計者は、フェライトビーズが「高周波を減衰する」ことを知っています。ただし、フェライトビーズは、特定範囲の周波数成分を除去できるのみで、広帯域のローパスフィルターのようには機能しません。不要な周波数成分が抵抗帯域内にあるフェライトビーズを選択する必要があります。不要な周波数成分が抵抗帯域よりやや低い/高いものを選択すると、期待する効果が得られません。 ビーズの製造業者が、ビーズのインピーダンスに対する負荷電流曲線を提供可能かどうかも確認してください。負荷電流が非常に大きい場合は、電磁飽和してインピーダンスを損失することなく電流を処理できるビーズを選択する必要があります。 注意事項 フェライトビーズは、高周波では基本的に抵抗負荷ですので、回路で若干の問題を起こす可能性があります。ビーズを配置する場合は、電圧降下と放熱を考慮する必要があります。 記事を読む
ヒートシンク設計の基本と原則の概要 ヒートシンク設計の基本と原則の概要 1 min Thought Leadership 私は、大学で楽器を演奏していましたが、先生はいつも「基本を大切に! 」と言っていました。そのため、何時間も続けて音階を練習し、ほとんど何も考えずに、音階やその変化形を演奏できるようになりました。電気エンジニアにとって、基本を、そして基本がどう成果物に影響するかを覚えておくことは、重要です。普通、私は、高レベルのシステムを用いて業務を行いますが、高度な用途に影響する簡単な原則を忘れがちです。熱管理とヒートシンクの場合、覚えておくべき主な3点は 対流、伝導、放射 です。これらの3つ基本が、フィンの配置や向き、熱伝導材料(TIM)、ヒートシンクの表面処理などに影響します。これら全てがどのようにかみ合うかを思い起こせば、ヒートシンク設計は簡単になるでしょう。 対流 先生からの別の金言に「音楽は自然に」というのがありました。これは、必ずしも対流に当てはまりません。基板では2種類の対流が利用できます。自然対流と強制対流です。自然対流は、空気を動かすのにファンや外部の力を利用しません。加熱具合が異なる流体に自然に発生する、対流によって起こります。この受動プロセスは電力を使用しませんが、冷却に少し時間がかかる場合もあります。強制対流はその逆で、空気を動かすのに外部の力を利用します。通常、この力に、ファンなどが使用されます。この方法では、外部の力に電力を供給する必要がありますが、代わりに、冷却は早くできます。興味深いことに、どちらの方法を選択するかが、ヒートシンク設計に影響します。 自然対流の場合、空気の動きを妨げないように、ヒートシンクとフィンを配置する必要があります。自然対流では流れが非常に弱く、多少でも妨げられると、冷却を大いに抑制します。ヒートシンクを置くとき、空気が フィンを通って平行に上昇 できるよう、ヒートシンクの向きを決める必要があります。フィンを気流に垂直に置くのは、逆立ちして楽器を演奏しようとするようなものであり、うまくいきません。フィン自体も 間隔を空けて配置 する必要があります。フィン同士の間隔が狭いと、対流を妨げます。 強制対流を扱う場合、簡単な面と複雑な面の両方があります。気流は保証されていますが、気流の最適化だけが問題です。前述しましたが、フィンと平行に空気が通過するようにヒートシンクの向きを決めます。フィンの設計が、少し注意を要する点です。強制対流の主な問題点は、圧力低下と損失です。フィンが高すぎる、またはフィンの間隔が狭すぎる場合、 ヒートシンクでの圧力低下 が過度になり、損失の大きいシステムになります。完璧なフィンのサイズや配置を見つけたい場合、 計算 が必要です。 オーケストラを指揮(conduct)するのと熱を伝導(conduct)するのとは、違います! 伝導 オーケストラでは、指揮者は指揮棒を使って指示を空中に出します。まるでラジオのアンテナのようです。回路での伝導は正反対です。伝導では、直接接触する物体同士の間で熱を伝えます。伝導に対処するときには、ヒートシンクの設置場所、その材料、ヒートシンクを基板に取り付けるのに使用するTIMについて考える必要があります。 ヒートシンクを配置することは重要です。冷却を最大化し、同時に使用スペースを最小化したいと考えます。実際、そもそも 記事を読む
ESDとは何か、ESDはどのようにPCB設計に影響するか? ESDとは何か、ESDはどのようにPCB設計に影響するか? 1 min Blog 電気技術者 電気技術者 電気技術者 2、3年南部に住んだ後、乾燥した西部に引っ越したところでした。私は、ここで育ちましたが、しょっちゅう静電気がバチッと起こるのを忘れていました。南部は湿度が高いので、空気の導電性が高くなります。一方、ここでは空気が乾燥し、絶縁されているので、静電気の衝撃は、ずっと大きくなります。子供の頃、靴下でカーペットの上を走り回り、お互いに静電気のショックを与えようとしたものです(結婚式では大いにひんしゅくを買い、注意されました)。 ショックを受けるごとに、今でも驚きますが、被害はありません。電子機器の場合は、そうはいきません。人が感じないほどのわずかな電圧によって破壊される場合もあります。その結果、PCB設計での軽減や保護を計画することが重要になります。 故意でなくても歩くだけで、ショックに十分な電圧差が簡単にできます。 ESDとは何か? 静電放電 (ESD)が発生するのは、電荷の異なる2つの物体が、物体間の絶縁が破壊されるほど近づいた、または帯電したときです。家庭用製品の場合、この破壊は通常、空気中で発生し、電圧は40kV/cmを超えます。 稲光は、最も身近なESDであり、雲と地面が巨大なコンデンサーを形成します。それほど劇的ではありませんが、夜にフリースやウールの毛布を振ると、小さな閃光が飛ぶのを見ることができます。 稲光は大規模な静電放電であり、雲と地面の間の空気の絶縁が破壊されたときに起こります。 これがPCBにどう影響するのか? 人やパッケージ、ケーブル、毛皮で覆われたペット、または反対の電荷を含む他の物体に触れると、または接近すると、どのPCBもESDの影響を受ける可能性があります。 触れる と、その電圧が放電され、比較的大きな電圧スパイクが発生します。電圧スパイクが逃げる際、放電電流がPCBで電磁場を生成します。 ESD保護 の目標は、放電とそれによって生じるEMの 影響を最小化 することです。 特に、多くの最新のチップセットは、非常に小さなリソグラフィパターンを使って作成され、高電圧に対する耐性が、ほとんどまたはまったくありません。その動作電圧である3.3Vを超えるDC値でも同じです。これらのコンポーネントの1つに直接到達するESD事象は通常、悲惨な結果をもたらし、ICを完全に破壊していまいます。 PCB設計のほぼあらゆる要素(トレース、配線、レイヤー、コンポーネント配置、スペーシング)が、基板のESD保護に影響する可能性があります。つまり、設計プロセスの初期にESDを考慮する必要があります。そうしないと、配線やコンポーネント配置の問題を修正するため、大規模なPCB設計変更が必要になるおそれがあります。 製品でESDの原因になるのは何か? 翼竜のような幅広い翼や、静電気を集める大きな足を持つ巨大生物を回避しても、まったくありふれた活動からESD事象は発生します。しばしば、歩くだけでも、普通のコンポーネントを破損するのに十分な電荷が蓄積されます。 記事を読む
組み込みシステム向けのリン酸鉄リチウムバッテリーとリチウムイオンバッテリーの比較 組み込みシステム向けのリン酸鉄リチウムバッテリーとリチウムイオンバッテリーの比較 1 min Blog この(比較的)新しい出会い系アプリTinderをご存じですか?私はまだ独身で交際相手がほしいので、試してみることにしました。まず、人の写真と経歴がランダムに出てくるので、気に入ったら右にスワイプ、気に入らなければ左にスワイプします。自分が右にスワイプし、相手も右にスワイプすると、お互いにチャットできます。試してみて、写真ばかり見ないで経歴を読むのにもう少し時間を割けばよかったと思いました。「マッチング」相手とチャットをしてみたら、写真を見て湧いた興味が冷めてしまったんです。組み込みシステムの場合も、特にバッテリーに問題があると同じように感じることがあります。たとえば、膨大な時間をかけて設計した基板なのに、バッテリーの劣化が早すぎたり、温度の問題で故障したりする場合です。最悪の場合、バッテリーから火花が出ることさえあります。私は交際相手のマッチングはできませんが、ボードに合ったバッテリー選びをお手伝いすることはできます。組み込みシステム向けの最も一般的な選択肢は、リチウムイオンバッテリー(Li-Ion)とリン酸鉄リチウムバッテリー(Li-phosphateまたはLiFePO4)の2つです。これら2つのタイプは、充電特性と放電特性がかなり異なります。どちらでも使用できる場合もありますが、どちらかがもう一方より適している場合が普通です。続きを読んで、どちらのタイプが皆さんの用途に最適かを判断してください。 リチウムイオンバッテリー 英語の「love」にはさまざまな意味があります。私は「I love my iPhone(iPhoneが大好き)」とも、「I love my girlfriend(彼女を愛してる)」とも言います。これらの「love」は、いくつか重要な点で意味が違います。同じように、一口に「リチウムイオン」と言っても、リチウムイオンバッテリーの種類が異なる場合があります。ここで述べるのは、ほとんどの場合がコバルト酸リチウム(LiCoO2)です。このリチウムイオンバッテリーは、アノードにグラファイトを使用しています。では、 リチウムイオンバッテリーの仕様を見てみましょう。 電圧: 公称3.6 V、範囲3.0 V ~ 4.2 V 比エネルギー: 150 ~ 記事を読む
マイクロビアPCB設計技術について知っておくべきこと マイクロビアPCB設計技術について知っておくべきこと 1 min Blog PCB設計者 PCB設計者 PCB設計者 大衆文化に少し遅れていると感じたことがありますか? 私は、Lady Gagaについて知ったばかりですが、数年前から大スターだったようです。遅ればせながら知ることができて、少しうれしいです。今、彼女の音楽を楽しんでいますが、肉でできたドレスを着て歌うのを見ないで済みました。セレブの奇妙な最新ファッションには興味がないかもしれませんが、注目すべきトレンドがいくつかあります。PCB設計界における希望の星の1つが、マイクロビアです。ここでは、マイクロビアとは何か、マイクロビアはどのような素晴らしいことができるのか、について説明します。マイクロビアは歌やダンスはできませんが、基板で多くのスペースを節約し、EMIを大幅に減らすことができます。 編集クレジット: Everett Collection / Shutterstock.com 大衆文化に少し遅れていると感じたことがありますか? 私は、Lady Gagaについて知ったばかりですが、数年前から大スターだったようです。遅ればせながら知ることができて、少しうれしいです。今、彼女の音楽を楽しんでいますが、肉でできたドレスを着て歌うのを見ないで済みました。セレブの奇妙な最新ファッションには興味がないかもしれませんが、注目すべきトレンドがいくつかあります。PCB設計界における希望の星の1つが、マイクロビアです。ここでは、マイクロビアとは何か、マイクロビアはどのような素晴らしいことができるのか、について説明します。マイクロビアは歌やダンスはできませんが、基板で多くのスペースを節約し、EMIを大幅に減らすことができます。 マイクロビアとは? Lil Yatchyの最新の曲をオフィスで聞いたことはないかもしれませんが、きっとマイクロビアについては少しは聞いたことがあるでしょう。あなたの知識を更に強化させてください。 マイクロビアは、確かに小さなビアですが、正確には、どれほど小さいのでしょうか? ほとんどの人は、マイクロビアを直径が 150μm未満のビアだと考えています。これらの小さな穴はレーザーで開けますが、そのプロセスは 絶えず改善されています。レーザー穴開け技術の新しい進歩によって、マイクロビアは 15μmまで小さくできます。レーザーは、一度に1つのレイヤーにのみ穴開けできます。一方、製造業者は、 複数のレイヤーに別々に穴を開け、積み重ねることによって、マイクロビアを作成できます。 記事を読む