Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
ソートリーダーシップ
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
ソートリーダーシップ
Highlights
All Content
Filter
Clear
Tags by Type
全て
ニュースレター
OnTrack
ソートリーダーシップ
Software
全て
Altium Designer
CircuitStudio
Thought Leadership
リジッドフレキシブル基板設計の課題を克服する
ウェアラブル電子機器には「大ヒット商品」となる資格があることに、疑問の余地はありません。 ウェアラブル機器の市場は、2016年は300億ドルになると予測されており、2026年には1,500億ドルまで成長するでしょう[1]。リジッドフレキシブルPCBの技術がなければ、これらの機器のほとんどが設計できません。つまり、エンジニアやPCB設計者は、ウェアラブルと「折り畳み型」の世界で設計、テスト、製造の専門家になる必要があります。 最も身近な製品は、おそらくスマートフォンとリンクしているスマートウォッチや、同じく手首に着用するフィットネストラッカーでしょう。しかし、これら民生品の他に、ウェアラブル機器は、医療機器や軍事用途に大いに進出しています。今では、リジッドPCBを組み込むことがほとんど不可能なスマート衣服も現れつつあります。それでは、市場に遅れないように、フレキシブル基板やリジッドフレキシブル基板をうまく設計するには、何が必要でしょう? ウェアラブル技術 - 何が問題なのか ウェアラブル機器は、小さくて、着ている人の注意をほとんど引かない必要があるのは、言うまでもありません。医療用ウェアラブル機器の場合、ユーザーは普通、他の人の注意も引きたくないと思います。何らかの方法で人体に取り付けるウェアラブル機器は、フレキシブル回路および非常に高密度のレイアウトを要求します。それだけでなく、多くの場合、基板の形は円形や楕円形であり、さらに変わった形の場合さえあります。設計者の観点から、これらのプロジェクトには、巧みな配置と配線が必要です。このように小さく高密度の基板では、リジッドフレキシブル設計に最適化されたPCBツールを使えば、変わった形状を非常に簡単に扱うことができます。 通常、リジッドフレキシブル設計では、コンポーネントを搭載したリジッド基板同士が、フレキシブル回路によって接続されている。フレキシブル回路を使用すると、製品筐体に収まるようアセンブリを曲げることができる 今日設計されるPCBの大半は、基本的に、回路を接続するためのリジッド基板です。しかし、PCB設計者にとって、ウェアラブル機器には、リジッド基板にはない以下のような問題点があります: 3Dパッケージに収まるよう、接続ポイントに負荷をかけずに、フレキシブル回路とそれぞれのコンポーネントを正確に配置する。 最終製品がそうであるように、アセンブリのリジッド部分とフレキシブル部分を統合してスタックアップを設計する。 フレキシブル回路を曲げることによる負荷をかけずに、製品筐体に収まるよう、リジッド基板とフレキシブル基板からなる最終アセンブリを形成する。 その上、設計が完了した後、リジッドフレキシブル製造業者を選定するという課題があります。これは、標準的なリジッド基板製造業者を見つけるより少し困難な場合があります。このようなさまざまな課題が加わった中、標準のリジッド基板設計では通常遭遇しない、よくある問題を回避しながら、リジッドフレキシブル設計の整合性をどのように確保しますか? リジッドフレキシブル基板設計の技術をマスターする Altium Designer
®
は、リジッドフレキシブル設計を扱う最も包括的なツール群を提供します。スタックアップを完全にマッピングし、 3Dでモデル化することができます。ティアドロップおよび信頼性向上技術を簡単に素早く使えます。さらに、製造出力データをフォーマットするためにODB++またはIPC-2581を選択し、設計意図を完全に伝達できます。 3Dモデリングを提供するPCB設計ソフトウェアによって、設計者は、PCBアセンブリがどのようにフィットするかを正確に把握できる Altium Designerの強力な技術を使用して、リジッドフレキシブル設計がもたらす多くの課題を克服する方法について、詳しくお知りになりたい場合は、今すぐ無料のホワイトペーパー
Thought Leadership
IoTアプリケーション用の各種LPWANネットワークの長所と短所
現在の IoT は、市場情勢と世論という闘技場における剣闘士の戦いに例えられるでしょう。 どのプロトコル やスタックを使用すべきか、どの IoT 製品が有用か( または有用でないか )、発展中の IoT エコシステムの それぞれの要素 においてどれが勝利するかというような部分について、常にラング付けが行われています。重要なのは、このような多くの小さな戦いは、設計者が次の IoT 設計において直面する、またはあらかじめ予測しておく決断の場でもあるということです。 ここでは、 IoT における現在の大きな考慮事項の 1 つとして、
Thought Leadership
オンボードの供給電圧を不安定化しないMicroSD電源回路の設計方法
PCB設計者は多くの場合、完璧な設計とコスト削減との間で適切なバランスを選択するという困難な課題に直面しています。MicroSDのようなデータ保存メディアを扱う設計では、「動作中挿入」や「突入電流」のような単純な概念を見落としたために、試作が不完全で高価になる可能性があります。 私は、ハードウェア設計を単純に保つことを美学にしてます。設計する上で本質的な必要性がないコンポーネントはすぐに取り除くことにしています。残念ながら、多くの失敗の結果、このように設計を単純化することにより、かえって問題が複雑化することもあるという教訓を得ました。10年前に、SDインターフェイスを使用するプロジェクトに取り組んだことがあります。当時はSDカードというのはよく知られていないコンポーネントで、技術資料もほとんど存在しませんでした。 突入電流を見落とさない MicroSDやSDカードのピン配列は、一見複雑ではないように見えます。十分な経験のないエンジニアでも、各ピンの機能を簡単に判別できるでしょう。一般的なMicroSDは3.3Vにおいて最大100mAを消費するため、3.3V電源に接続すれば問題はないと、私も考えていました。しかし、自分が設計した実用試作にSDカードを再挿入したときに問題が発生しました。これまでの多くのエンジニアと同じように私も、SDインターフェイス用の回路を設計するとき、重要な概念を見落としていました。すなわち、突入電流を考慮に入れていなかったのです。そのため、私たちのマイクロコントローラはSDカードを挿入するごとにリセットされる結果となりました。 この結果から、現在にまで通用する教訓が導き出されます。SDカードは、フォームファクターの小型化されたMicroSDカードと電気的特性はほぼ同じです。すなわち、私が10年前に犯した過ちは、今日のPCB設計でも同じように発生するということです。 コンデンサーを使用して問題を回避できます。 デカップリングコンデンサー: プロトタイプ構築後の迅速な修正 それでは、MicroSDカード用に設計したボードでこの過ちを犯してしまった場合にはどうすべきでしょうか?ほとんどのMicroSDコネクターにはカード検出ピンが搭載されており、マイクロコントローラーはこのピンを使用してMicroSDカードの存在を検出できます。システムは、MicroSDが正しく挿入されているときにのみ電源をオンにし、MicroSDが取り外されたときに電源をオフにします。問題を素早く解決するには、MicroSDカードの電源ピンの近くにデカップリングコンデンサーを追加します。これによって、回路に必要な安定性を得ることができます。この解決策は、MicroSD挿入時の突入電流の問題を解決するのに有効なことが判明しました。 完成したPCB上にコンデンサーを人手でハンダ付けするというのは、洗練された解決策ではないのは事実ですが、急いで問題を解決しなければならないときに可能な唯一の方法です。ここで考慮すべき最も重要な要素は、突入電流を低減し、供給電圧の不安定化を防ぐために十分な電荷を保持できるコンデンサーの選択です。 デカップリングコンデンサーの最適な値は、合計負荷容量と、MicroSDカードのVddとVssとの間の容量を超えている必要があります。ほとんどの場合、45uFを超える値が適切です。ここで重要なのは、コンデンサーを可能な限りMicroSDの近くに配置することです。場合によっては、PCB試作でこれを行うのが不可能なため、基板の修正が必要なこともあります。 問題は、単一のコンデンサーを使用する単純なソリューションを使い続けるか、より洗練された 手法に変更すべきかです。メモリメディアに関する私の過去の経験から、MicroSDカードの電気的特性はブランドによって異なるため、今後行う設計については、特定の特性を想定しないことをお勧めします。 洗練された手法は、設計開始時点からMOSFETを使用することです 設計フェーズにおける洗練されたソリューション MicroSDカードによる内部的な供給電圧の乱動を防止する、デカップリングコンデンサー以外の最良の方法は、電気的スイッチを使用して突入電流を制限することです。より具体的に言うと、FDN340P MOSFETを使用して、MicroSDの電源をコントロールします。この方法では、電子回路とファームウェアロジックとの連携により、MicroSDの電源が効率的に管理されます。 MOSFETを使用すると、電圧の増大率を制限し、突入電流の問題を回避するため役立ちます。 アプリケーションに応じて、許容される電圧スルーレート を持つMOSFETを選択します。このスルーレートにより、電圧の急激な変動を抑えることができます。また、下流方向の最大突入電流も制限できます。この両方により、MicroSDの正しい動作を維持できます。
Thought Leadership
自動車レーダーや5G用途の高周波回路向けPCB設計ガイドライン
今朝、通りを歩いていて、非常に奇妙な光景を見ました。長くもつれた磁気VHSテープが、風に運ばれ、道を転がっていたのです。私は、ビデオレンタル店や巻き戻し機といった素朴な時代に連れ戻されました。もし、あの巻き戻し機を速いと思っていたならば、今日の電子回路の大躍進には、目が回るでしょう。基板設計における最新の進化の1つは、5Gネットワークおよび先進運転支援システム(ADAS)対応自動車という、2つの新しいテクノロジーによって促されています。これらのテクノロジーは両方とも、基板設計者によって長い間、恐れられてきた、極高周波(EHF)帯域を使用します。自分の基板が、ベータマックスや大型ラジカセと同じ運命をたどらないよう、高周波の未来に備えるのがよいでしょう。 これとお別れできてよかった ミリ波を使用する理由 RFやマイクロ波の周波数が十分でないからといって、EHF帯域に移ろうとしているのは、なぜでしょう? 5GとADASレーダーという2つの進歩が、より高い周波数への移行を迫っているからです。 5G - 電気通信企業は、今日の4G/LTEの速度や待ち時間から、より速く明るい未来の5Gへと移行しようとしています。現在の移動体通信ネットワークでは、ダウンロード速度は、 数十メガビット/秒、待ち時間は 約70ミリ秒>です。5Gでは大きく飛躍し、 ダウンロードは最大10Gbps、待ち時間は10ミリ秒未満になります。この全てが可能なのは、5GがEHF帯域で動作するからです。周波数帯域幅が広いほど、待ち時間は短く、周波数が高いほど、データ転送速度は速くなります。業界では、5Gの実装開始を2018年頃と予想しています。その時には、ミリメートル(mm)波長信号を扱う準備ができている必要があります。 ADASレーダー - ADAS対応車向けレーダーは、開発済みの技術です。衝突検出レーダーは、30GHz未満で動作していましたが、最近、規格が 77GHzまで上がりました。メーカーが製造する ADAS機能付き自動車が増える>につれて、通りを 走るレーダーシステムが増えると予想できます。何らかの種類の自動車レーダーを扱う基板を設計したい場合、EHF信号を扱う準備をしておくべきです。 これらの技術が両方とも成長するにつれて、その動作周波数を扱う方法について、ますます知る必要ができてきます。急速に変わる基板設計環境に対処するため、ここでは、材料と設計のガイドラインを示します。 材料のガイドライン 実は、高周波基板に使用する
Thought Leadership
設計要件に対して最適なIoTプロトコルの選択
IoT製品設計は、新しいノートパソコンの購入と似ている部分があります。速度、コスト、機能、相互運用性など多くの要素を検討する必要があります。最終的には、これらの要素のうち1つまたは2つを特に重視し、他の要素を可能な限り最適化することになります。私の場合、何年にもわたってLinuxコンピューターだけを使用してきましたが、Microsoftファイルの共有が必要になったとき、相互運用性の制約は厳しいものでした。最終的に私は妥協し、コンピューターをWindowsとのデュアルブートに設定しました。 オープンソースでも独自のものでも、ほとんどのシステムにおいて相互運用性は重要です IoT製品の相互運用性についての質問は、使用する通信プロトコルに依存します。これは、ほとんどの製品は別のプロトコルを使用してシステムと通信できないためです。選択するプロトコルは、ハードウェアにも影響を及ぼします。例えば、伝送距離によってシステムで利用可能な IoTモジュール、電力要件、 ネットワーク構成が決まります。 プロトコルの選択方針 選択可能なプロトコルは膨大な数にのぼります。新しいバージョンが 毎年誕生し、グループは既存の オプションの統合を試みています。自分の製品に最適なプロトコルは、どのように決定すればいいのでしょうか? 国際的な標準を策定しようとすることは、それ自体が混乱を、絵文字についてさえも引き起こします。 検討の必要があるすべてのオプションにストレスを与える前に、いくつかの助言を行いたいと思います。これは正直なところ、私自身が最初のIoT設計を行う前に 読んでいればよかったと思うものです。「結局のところ、 それを使わないこと自体が間違いであると言えるほど浸透している、または重要である標準は存在しません」(テキストの強調は私が加えたものです)。 1. 優先度の特定 IoT Centralが開発者の動向について行った 2017年の調査によれば、IoTについて最も重要な懸念はセキュリティと相互運用性です。セキュリティは、 物理的なPCBから ユーザーデータの保存まで、製品設計のあらゆるレベルで対処が必要です。相互運用性はもう少しだけ簡単です。適切なプロトコルを選択することで、自分の製品が属するIoTエコシステムを最大化することが可能です。
Thought Leadership
低消費電力広域ネットワークによりIoTシステムで何が可能になるか
土木エンジニアが好きで、電気エンジニアが嫌いなものは何でしょうか? 答はコンクリートです。私たちの物理的な世界の基盤であるコンクリートは、多くの場合に私たちのデジタル世界の基盤である電気信号の混乱の原因となります。立体駐車場、ショッピングモール、地下構造物はすべて、信号適用範囲の低下という問題を抱えています。いずれかの種類の窓やリピーターを使用しなければ、これらの部分で良好な適用範囲が得られることは稀です。モノのインターネット(IoT)がこのような場所への展開を目指すときも、これらの点が問題になります。このような場合に役に立つのが低消費電力広域ネットワーク(LPWAN)です。LPWANを使用すると、IoTデバイスの適用範囲と電力の問題を解決できます。さらに、低消費電力の分散サービスのオプションが可能となり、IoTに革新的な変化をもたらす可能性もあります。 LPWANとは何か LPWANの概要は、その名前が示すとおりです。LPWANは低消費電力のデバイスを対象として、広い範囲を適用するためのネットワークです。明確にしておくと、LPWANは基準ではなく、単なる記述です。現在、または過去において、 LPWANを提供するさまざまな企業が各種の 異なるテクノロジーを使用してきました。これらのシステムに共通の必要条件は、「広い範囲」( 通常は2km以上)をカバーし、低消費電力のデバイスに対応することです。市場への普及を目指すには、低価格であるという条件も加わります。 大きな複合施設やビルディングの施設監視など分散した配置を可能にするため、広い範囲をカバーする必要があります。LPWANシステムは本質的に集中化していないため、多くのセンサーやデバイスを購入する必要があります。これらのコストが加算されることから、LPWANが成功するには、製品が安価な必要があります。LPWANのほとんどのセンサーやデバイスは、バッテリーで何年も動作する必要があります(標準は10年のようです)。つまり、センサーが低消費電力で、LPWANも低消費電力のネットワークソリューションを使用する必要があります。低消費電力ネットワークの唯一の欠点は、データ転送速度が低下することです。その結果、ほとんどのLPWANは処理能力の低いアプリケーションに適してます。 LPWAN市場は驚異的な速度で成長しつつあり、 2025年には40億台のデバイスが接続されると予測されています。この成長機運から激しい競争が引き起こされ、電気通信業界まで波及しています。 LPWANではないもの セルネットワークは現在のところ、LPWANとはみなされていません。しかし、セル事業者が この市場へ参入を試みることにより、情勢は変化する可能性があります。テレコムには既に巨大なインフラストラクチャが存在し、それによってネットワークを簡単に稼動できます。セルのもう1つの利点は、企業のビジネスモデルの関係で、LPWANシステムを安価に販売できることです。これらの企業はハードウェアではなく契約で利益を上げます。このモデルは、これらの企業が可能な限り多くのシステムを低価格で販売するための動機付けとなります。既に述べたように、LPWANは低価格であることが重要です。これらの事業者が抱える唯一の問題は低消費電力の要件です。現在の携帯電話アンテナは消費電力が多すぎるため、多くのLPWANアプリケーションにおいて有用ではありません。しかし、テレコムが 低消費電力のソリューションの開発に投資を行っているため、この状況も変化しつつあります。 この状況は、ライセンス不要の周波数帯を運用しているLPWAN企業にとって、どのような影響を及ぼすでしょうか?まず、これらの企業は間もなく、ライセンスされている帯域で莫大な資金を持つ通信事業者と競合することになるでしょう。 5Gはセルプロバイダーの次のLPWANソリューションになると予測されます。 現在のLPWAN IoTアプリケーション それでは、LPWANはIoTとどのような関わりがあるのでしょうか? 個別のIoTデバイスは既に
Pagination
First page
« First
Previous page
‹‹
ページ
31
現在のページ
32
ページ
33
ページ
34
ページ
35
ページ
36
Next page
››
Last page
Last »
他のコンテンツを表示する