Skip to main content
Mobile menu
PCB設計
Altium Designer
世界中の設計者に支持される回路・基板設計ソフトウェア
CircuitStudio
エントリーレベルでプロ仕様のPCB設計ツール
CircuitMaker
個人、オープンソース、非営利団体のための無料PCB設計ツール
Altiumに乗り換える理由
他のPCB設計ツールからAltiumに乗り換える理由と方法を確認する
ソリューション
Altium Enterprise ソリューション
デジタルトランスフォメーションへの 最終ステップ
電子部品プラットフォーム
世界中の技術者が利用するOctopart
Altium 365
リソース&サポート
製品情報
無償評価版
ダウンロード
拡張機能
リソース&サポート
Renesas / Altium CEO Letter To Customers
全てのリソース
サポートセンター
マニュアル
Webセミナー
コミュニティ
フォーラム
バグの報告
アイディア
教育
専門家育成トレーニング 資格取得プログラム
Comprehensive Career Training for Altium Software and Design Tools
大学・高専
Academic Licenses, Training, Sponsorships and Certificates for Higher Education
オンラインストア
Search Open
Search
Search Close
サインイン
ソートリーダーシップ
Main Japanese menu
ホーム
PCB設計
PCB設計コラボレーション
コンポーネント管理
設計データ管理
製造出力
ECAD-MCAD共同設計
高密度配線(HDI)設計
高速設計
マルチボード設計
PCBレイアウト
PCB配線
PCBサプライチェーン
パワーインテグリティ
RF設計(高周波回路)
リジッドフレキシブル基板設計
回路設計
シグナルインテグリティ
シミュレーション/解析
ソフトウェアプログラム
Altium 365
Altium Designer
PDN Analyzer
リソース
エンジニアリングニュース
ガイドブック
ニュースレター
ポッドキャスト
Webセミナー
ホワイトペーパー
無料トライアル
ソートリーダーシップ
Highlights
All Content
Filter
Clear
Tags by Type
全て
ニュースレター
OnTrack
ソートリーダーシップ
Software
全て
Altium Designer
CircuitStudio
Thought Leadership
わずか4つのステップで電源分配ネットワークを最適化する方法
最近の設計者は、電源分配ネットワーク(PDN )インテグリティという、従来考える必要のなかった問題に直面しています。私たちは皆、何十年もの間、シグナルインテグリティーの必要性を感じてきましたが、その間、パワーインテグリティーは、脇に置かれてきました。従来は、専用の電源プレーンを使用するスペースが多くありました(動作に必要なものをデザインに容易に含めることができました)。 しかし、設計の物理的な制限を押し広げ、より小さなフォームファクターに、より多くのコンポーネントを詰め込み続ける中、フォームファクターの縮小を続けながらPDN を最適化する方法が必要となっています。物理的な試作やシミュレーションのエキスパートに頼らないで、設計環境で直接、電源プレーンの形を最適化できれば、どうでしょう? PDN Analyzer powered by CST
®
は、Altium Designer ワークスペース内でPDN インテグリティーへの道を提供します。従来は非常に長く骨の折れた解析プロセスを、単一の設計環境で完了できる複数のステップに分割できるようになりました。リアルタイムで変更を行い、解析を再実行できます。 PDN Analyzer を使って、わずか 4 つのステップで簡単に PDN を最適化できる方法を説明します。
Thought Leadership
PCB設計における上位6つのDFM問題
PCBデザイナーとして、さまざまな要件と期待を管理する必要があります。電気的、機能的、および機械的な側面を考慮する必要があります。さらに、PCBレイアウトは、可能な限り最高の品質で、可能な限り低いコストで、タイムリーに生産されなければなりません。そして、これらの要件をすべて通じて、DFM(製造可能性のための設計)も考慮する必要があります。これは PCB設計 プロセスの大きな部分であり、適切に行われない場合、頻繁に問題を引き起こすことがあります。PCBデザインにおける3つのDFMの問題を見てみましょう。 PCBレイアウトにおける一般的なDFMの問題 CADツールに安心を見出すのは簡単ですが、CADツールが簡単に解決できないDFMの問題を作り出すことを許してしまうかもしれません。回路基板がすべての電気的ルールチェックに合格し、電気的に正しい場合でも、製造可能でない場合があります。なぜこのようなことが起こるのでしょうか?PCB設計ツールは、電気的に機能的 かつ大量生産で製造可能な回路基板レイアウトを作成するのに役立つはずではないでしょうか? PCBのレイアウトが非常に複雑になり、DFM(設計製造統合)の問題を多く隠してしまうことがあります。これらのDFMの問題のいくつかは、組み立て、電気テスト、または製造に問題を引き起こしますが、製造プロセスについてより多くを知っていれば、これらを克服することができます。製造プロセス全般についてもっと学ぶには、 Altium PCB Design Blogのこの記事をご覧ください。設計レビュー中に製造業者が何を探しているかをもっと知りたい場合は、ここにPCBレイアウトで彼らが特定しようとする最も一般的なDFM問題がいくつかあります: 不均一なSMDパッド接続 SMDパッドの誤ったはんだマスク開口部 SMDパッドのオープンビア アシッドトラップ クリアランス 一般的な信頼性標準違反 これらの問題を防ぐためには、PCBレイアウトツールの設計ルールに依存することが重要であり、これにより回路基板を最小限の設計レビュー時間で製造に移行できるようになります。 不均一なSMDパッド接続 小型のSMD部品、例えば0402、0201などは、リフローはんだ付け中のトゥームストーニングを防ぐために均一な接続が必要です。BGAパッドにも同様のことが当てはまり、信頼性の高いはんだ付けを保証するためです。これは、コンポーネントのフットプリントに正しいパッドサイズを配置することによって簡単に実現できます。一般的なコンポーネントには定義されたパッドサイズ(例えば、
Thought Leadership
レイヤースタックを初めから間違えないようにする方法
PCBの製造工程で最も犯しやすい間違いの1つは、層の順序の誤りです。 確認しないままにしておくと、全工程が無駄になる場合があります。 PCB実装工程を経た製品は、電気的導通の観点からは機能するかもしれません。電気的に導通していれば、電気的検査にも合格するかもしれません。しかし、 プレーンや信号層の順序と層間の距離を最優先にしている設計では、最終的な実装段階で障害が発生します。この問題を予防するにはどうすればよいでしょうか ? 詳細な方法 正しい順序で積層し、後工程外観検査を行うために必要な情報を製造業者に確実に伝えるには、そうした情報を銅パターンとして直接設計に組み込んでおく必要があります。これらのパターンを設計に含め、最終的な実装の検査のための機構を提供するのは PCB設計者の責任です。該当するのは、以下の機能です。 他の全てのレイヤーと関連付けて定義された番号割付方針によりレイヤーを正確に識別する。 レイヤーの順序を目視で簡単に検査できるよう積層ストライプを追加する。 エッチング後の銅の厚さと幅を簡単に確認できるテストトレースを提供する。 製造データ内に適切な銅パターンを設計しておけば、積層順序を間違える心配はほとんどなくなります。早い段階で詳細情報を提供することで、問題を回避し、コストと時間を削減して、製造プロセスを効率化できます。 レイヤースタックを初めから間違えないために必要な機能を追加する方法に関心がありますか? レイヤースタックを間違えないようにする方法についての無料のホワイトペーパーをダウンロードしてください。
Thought Leadership
高速設計プロセスを自動化する方法
ネットの個々のセグメント長、ビアの深さ、またはピンの長さをスプレッドシートで追跡するのは、負担になることがあります。Altium Designer
®
の新技術を使って、高速設計プロセスを自動化する方法を学びましょう。 高速設計は、電気エンジニアが取り組むことができる最も難しい課題の一つです。高速信号がどのように反応するかに影響を与える要因は数多くあります。一般的な誤解は、高速設計はシステムクロック周波数の機能であるということです。これは事実ではありません。むしろ、高速は立ち上がり時間、PCBスタックアップによるインピーダンス制御、トレース幅、および終端によって決定されます。 高速スイッチングは、エンジニアとPCB設計者にとって本質的に2つのことを意味します: 信号整合性の問題 反射、クロストークなど 信号整合性の目標は、制御されたインピーダンスのルーティング、終端、およびPCBスタックアップを通じて達成されます。 タイミング制約 複数の信号がほぼ同時に目的のピンに到達することを保証します 信号経路のルート長を一致させます 高速設計の古い方法 過去、エンジニアは信号整合性とタイムコンストレイントの問題に対処するために、すべてをスプレッドシートで追跡する必要がありました。これにより、ネットごとの各個別セグメント長、ビアの深さ、抵抗器の長さ、ピンの長さを追跡することができました。それぞれのネットについてすべてを合計し、必要に応じて信号長を追加した後、グループ内のすべてのネットの長さを均等にすることができました。これは、煩雑で時間がかかる古い方法の長さ合わせです。 スプレッドシートでデータを追跡する時間を無駄にせずに、長さや長さの一致などの関連する設計ルールを自動的にスコープできたらどうでしょうか? 無料の高速設計とxSignals
®
ホワイトペーパーをダウンロードして、高速設計プロセスを自動化する方法を学びましょう。
Thought Leadership
PCB設計に関する7つの一般的な誤解
PCB組み立てを何年も経験しているあなたなら、デカップリングキャパシタやはんだマスク、回路図記号をよく知っているはずですよね? さあ、覚悟してください。これまであなたが思っていたプリント基板設計に関するすべてを覆すかもしれません。まあ、すべてではありませんが、7つのことです。設計時には、教えられたこと、聞いたこと、自分で学んだこと(直角はPCBの酸の罠?)など、もはや当てはまらない特定の誤解を持っているものです。これらの誤解に固執することは、設計にとって障害となり、不良基板や現場での故障、さらには全体的な生産コストの増加につながる可能性があります。時々、教えられた経験則や標準設計ガイドラインを見直し、現在の設計環境でそれらが意味をなすかどうかを確認することが不可欠です。 プリント基板設計の7つの誤解 1. 剛性回路とフレキシブル回路は同じ設計ルールを持っています。材料は異なりますが、機能性は同じなので、設計図に大きな違いはないはずですよね? 考えているよりも多くの違いがあります。一つには、フレキシブル回路は折り曲げられた時の位置的なストレスを最小限に抑えるように設計する必要があります。基材の寸法安定性にも違いがあります。剛性回路の設計をどれだけよく知っていても、フレキシブル回路を始めたばかりの場合、追いつく必要があります。 Via in Padが回路基板を損傷する。特定の状況では、これが真実になることがあります—適切に使用されない場合です。Via in padをキャップしない、または(反対側から)マスクしない場合、めっき化学薬品が閉じ込められる可能性があります。しかし、それでも、多くの設計者が言うように、完全にvia padを避ける理由にはなりません。実際、via in-padは多くの重要な用途を持っています。それらは、バイパスキャップを近くに配置するのに適しています。また、熱管理やグラウンディングに役立ち、任意のピッチBGAのルーティングを容易にします。Via in the padを恐れる必要はありません。適切な ガイダンスがあれば、特定の状況で素晴らしいツールになることができます。 3. PCBの酸トラップは90度の角度です。これはかつて真実でした。PCBが酸でエッチングされていた時、90度の角度は角に酸を溜め込み、問題を引き起こしていました。そのため、PCBはほぼ45度の角度で設計されていました。しかし、現在ではエッチングに酸ではなくアルカリが使用されるため、PCBの酸トラップはもはや問題ではありません。90度の角度を自由に使用してください、それらはもはやPCBの酸トラップではありません! 5
Thought Leadership
テストまたはDFTの設計に成功する方法
プリント回路基板が完成するまでにかかる全コストは、ブランクPCBの製造コスト、コンポーネントのコスト、実装コスト、テストのコスト、のように複数の基本カテゴリに分類できます。最後に出てきた、完成した基板をテストするのにかかるコストは、製品全体の合計製造コストの25%から30%を占める場合があります。 テストカバレッジを最大化し、PCB製造エラーおよびコンポーネント障害に関する欠陥を迅速に分離できるよう、製品を設計することによって、DFTは収益性のある設計として最高のものとなります。基板のテストカバレッジを確実に最大化するために、従うべき設計の最善の方法はいったい何なのか? 確認してみましょう。 いつでも事前に計画する 設計を計画するときに聞く最初の2つの質問は次のとおりです。 誰が実装をテストしますか? 機能は何ですか? DFTガイドラインは最初のレイアウトの計画で役に立ちます。しかしながら、契約製造元(CM)に直接連絡して、知識のあるテストエンジニアと特定のニーズについて議論するのは良い考えです。テストエンジニアは機能について議論することができ、提供できるものとは異なるテスト方法論があることを気づかせてくれます。 バウンダリースキャン(JTAG)、自動ICTテスト、X線断層撮影(AXI)および目視検査(マニュアルおよびマシンビジョン)の組み合わせにより、最も包括的なテストカバレッジを実現します。また、これによりPCB製造プロセスについて即時フィードバックが得やすくなり、ワークフローを必要に応じて迅速に修正し、欠陥コンポーネントを特定して取り除くことができます。 インサーキットテスター(ICTテスト) テストカバレッジの決定 次に、完成品の品質を保証するためには、どのテストカバレッジが必要かを検討する必要があります。アプリケーションと実際のコストの制約から、利用可能なテスト機能の全てを使用することが必要な場合と、そうでない場合があります。例えば、地球の周りを公転する衛星を調査する場合、可能な限りのタイプのテストを実施して、修理できない環境でも、数年にわたって完成品が確実に機能するのを保障しようとするでしょう。しかし、ミュージカルの挨拶状を作成する場合は、シンプルな必要最低限の機能テストだけになるでしょう。 どのテストカバレッジが一番良いのでしょうか? 完成したプリント回路基板のテストフェーズで、全てのコストの最大30%を占めます。そのため、PCB設計ソフトウェアにおいて、DFTプロセスを計画し戦略を練ることが以前にもまして重要になっています。そこで、最初に製造者の能力を知り、品質の高い完成品を保証するためにテストカバレッジに何が必要かを考えます。 フリーのテスト容易化設計(DFT)ホワイトペーパーをダウンロードして、 利用可能なテストカバレッジとどのPCB設計が最適であるかを学びます。
Pagination
First page
« First
Previous page
‹‹
ページ
32
ページ
33
ページ
34
ページ
35
現在のページ
36
ページ
37
Next page
Next ›
他のコンテンツを表示する